Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Ann Hepatol ; 29(5): 101530, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39033929

RESUMO

INTRODUCTION AND OBJECTIVES: There are different situations in which an extrahepatic bile duct replacement or substitute is needed, such as initial and localized stages of bile duct cancer, agenesis, stenosis, or bile duct disruption. MATERIALS AND METHODS: A prosthesis obtained by electrospinning composed of Poly (D,L-lactide-co-glycolide) (PGLA) - Polycaprolactone (PCL) - Gelatin (Gel) was developed, mechanical and biological tests were carried out to evaluate resistance to tension, biocompatibility, biodegradability, cytotoxicity, morphological analysis and cell culture. The obtained prosthesis was placed in the extrahepatic bile duct of 15 pigs with a 2-year follow-up. Liver function tests and cholangioscopy were evaluated during follow-up. RESULTS: Mechanical and biological evaluations indicate that this scaffold is biocompatible and biodegradable. The prosthesis implanted in the experimental model allowed cell adhesion, migration, and proliferation, maintaining bile duct permeability without altering liver function tests. Immunohistochemical analysis indicates the presence of biliary epithelium. CONCLUSIONS: A tubular scaffold composed of electrospun PGLA-PCL-Gel nanofibers was used for the first time to replace the extrahepatic bile duct in pigs. Mechanical and biological evaluations indicate that this scaffold is biocompatible and biodegradable, making it an excellent candidate for use in bile ducts and potentially in other tissue engineering applications.


Assuntos
Implantes Absorvíveis , Ductos Biliares Extra-Hepáticos , Gelatina , Poliésteres , Engenharia Tecidual , Alicerces Teciduais , Animais , Ductos Biliares Extra-Hepáticos/cirurgia , Engenharia Tecidual/métodos , Suínos , Teste de Materiais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Proliferação de Células , Desenho de Prótese , Materiais Biocompatíveis , Movimento Celular , Adesão Celular , Fatores de Tempo , Testes de Função Hepática , Nanofibras
2.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273394

RESUMO

Purinergic signaling has emerged as an important paracrine-autocrine intercellular system that regulates physiological and pathological processes in practically all organs of the body. Although this system has been thoroughly defined since the nineties, recent research has made substantial advances regarding its role in aspects of liver physiology. However, most studies have mainly targeted the entire organ, 70% of which is made up of parenchymal cells or hepatocytes. Because of its physiological role, the liver is exposed to toxic metabolites, such as xenobiotics, drugs, and fatty acids, as well as to pathogens such as viruses and bacteria. Under injury conditions, all cell types within the liver undergo adaptive changes. In this context, the concentration of extracellular ATP has the potential to increase dramatically. Indeed, this purinergic response has not been studied in sufficient detail in non-parenchymal liver cells. In the present review, we systematize the physiopathological adaptations related to the purinergic system in chronic liver diseases of non-parenchymal liver cells, such as hepatic stellate cells, Kupffer cells, sinusoidal endothelial cells, and cholangiocytes. The role played by non-parenchymal liver cells in these circumstances will undoubtedly be strategic in understanding the regenerative activities that support the viability of this organ under stressful conditions.


Assuntos
Fígado , Receptores Purinérgicos , Transdução de Sinais , Humanos , Animais , Fígado/metabolismo , Receptores Purinérgicos/metabolismo , Células de Kupffer/metabolismo , Células Estreladas do Fígado/metabolismo , Trifosfato de Adenosina/metabolismo , Hepatopatias/metabolismo , Hepatopatias/patologia , Hepatócitos/metabolismo
3.
Clin Sci (Lond) ; 132(12): 1257-1272, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29773670

RESUMO

Regeneration of ethanol-injured rat gastric mucosa must undergo changes in major metabolic pathways to achieve DNA replication and cell proliferation. These events are highly dependent on glucose utilization and inhibited by vitamin E (VE) (α-tocopherol) administration. Therefore, the present study aimed at assessing lipid metabolism in the gastric mucosa and ethanol-induced gastric damage and the effect of α-tocopherol administration. For this, rates of fatty acid ß-oxidation and lipogenesis were tested in gastric mucosa samples. Through histological analysis, we found loss of the mucosa's superficial epithelium, which became gradually normalized during the recovery period. Proliferation of gastric mucosa occurred with augmented formation of ß-oxidation by-products, diminished synthesis of triacylglycerols (TGs), as well as of phospholipids, and a reduced cytoplasmic NAD/NADH ratio, whereas the mitochondrial redox NAD/NADH ratio was much less affected. In addition, α-tocopherol increased palmitic acid utilization in the gastric mucosa, which was accompanied by the induction of 'mirror image' effects on the cell redox state, reflected in an inhibited cell gastric mucosa proliferation by the vitamin administration. In conclusion, the present study shows, for the first time, the role of lipid metabolism in the adaptive cell gastric mucosa changes that drive proliferation after a chronic insult. Moreover, α-tocopherol increased gastric mucosa utilization of palmitic acid associated with energy production. These events could be associated with its antioxidant properties in co-ordination with regulation of genes and cell pathways, including changes in the cell NAD/NADH redox state.


Assuntos
Etanol/farmacologia , Mucosa Gástrica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , alfa-Tocoferol/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Ácidos Graxos não Esterificados/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Gastrite/metabolismo , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Oxirredução , Ácido Palmítico/metabolismo , Ratos Wistar , alfa-Tocoferol/administração & dosagem
4.
J Transl Med ; 14(1): 307, 2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27784309

RESUMO

BACKGROUND: The pre-treatment with α-tocopherol inhibits progression of rat liver proliferation induced by partial hepatectomy (PH), by decreasing and/or desynchronizing cyclin D1 expression and activation into the nucleus, activation and nuclear translocation of STAT-1 and -3 proteins and altering retinoid metabolism. Interactions between retinoic acid and polyamines have been reported in the PH-induced rat liver regeneration. Therefore, we evaluated the effect of low dosage of α-tocopherol on PH-induced changes in polyamine metabolism. METHODS: This study evaluated the participation of polyamine synthesis and metabolism during α-tocopherol-induced inhibition of rat liver regeneration. In PH-rats (Wistar) treated with α-tocopherol and putrescine, parameters indicative of cell proliferation, lipid peroxidation, ornithine decarboxylase expression (ODC), and polyamine levels, were determined. RESULTS: Pre-treatment with α-tocopherol to PH-animals exerted an antioxidant effect, shifting earlier the increased ODC activity and expression, temporally affecting polyamine synthesis and ornithine metabolism. Whereas administration of putrescine induced minor changes in PH-rats, the concomitant treatment actually counteracted most of adverse actions exerted by α-tocopherol on the remnant liver, restituting its proliferative potential, without changing its antioxidant effect. Putrescine administration to these rats was also associated with lower ODC expression and activity in the proliferating liver, but the temporally shifting in the amount of liver polyamines induced by α-tocopherol, was also "synchronized" by the putrescine administration. The latter is supported by the fact that a close relationship was observed between fluctuations of polyamines and retinoids. CONCLUSIONS: Putrescine counteracted most adverse actions exerted by α-tocopherol on rat liver regeneration, restoring liver proliferative potential and restituting the decreased retinoid levels induced by α-tocopherol. Therefore interactions between polyamines and retinol, mediated by the oxidant status, should be taken into consideration in the development of new therapeutic strategies for pathologies occurring with liver cell proliferation.


Assuntos
Regeneração Hepática/efeitos dos fármacos , Putrescina/farmacologia , Retinoides/metabolismo , alfa-Tocoferol/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/enzimologia , Hepatectomia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/patologia , Masculino , Mitose/efeitos dos fármacos , Ornitina Descarboxilase/metabolismo , Oxidantes/metabolismo , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
5.
BMC Neurosci ; 17(1): 42, 2016 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-27364353

RESUMO

BACKGROUND: After spinal cord (SC)-injury, a non-modulated immune response contributes to the damage of neural tissue. Protective autoimmunity (PA) is a T cell mediated, neuroprotective response induced after SC-injury. Immunization with neural-derived peptides (INDP), such as A91, has shown to promote-in vitro-the production of neurotrophic factors. However, the production of these molecules has not been studied at the site of injury. RESULTS: In order to evaluate these issues, we performed four experiments in adult female Sprague-Dawley rats. In the first one, brain derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) concentrations were evaluated at the site of lesion 21 days after SC-injury. BDNF and NT-3 were significantly increased in INDP-treated animals. In the second experiment, proliferation of anti-A91 T cells was assessed at chronic stages of injury. In this case, we found a significant proliferation of these cells in animals subjected to SC-injury + INDP. In the third experiment, we explored the amount of BDNF and NT3 at the site of injury in the chronic phase of rats subjected to either SC-contusion (SCC; moderate or severe) or SC-transection (SCT; complete or incomplete). The animals were treated with INDP immediately after injury. Rats subjected to moderate contusion or incomplete SCT showed significantly higher levels of BDNF and NT-3 as compared to PBS-immunized ones. In rats with severe SCC and complete SCT, BDNF and NT-3 concentrations were barely detected. Finally, in the fourth experiment we assessed motor function recovery in INDP-treated rats with moderate SC-injury. Rats immunized with A91 showed a significantly higher motor recovery from the first week and up to 4 months after SC-injury. CONCLUSIONS: The results of this study suggest that PA boosted by immunization with A91 after moderate SC-injury can exert its benefits even at chronic stages, as shown by long-term production of BDNF and NT-3 and a substantial improvement in motor recovery.


Assuntos
Autoimunidade , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína Básica da Mielina/imunologia , Neurotrofina 3/metabolismo , Fragmentos de Peptídeos/imunologia , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/terapia , Animais , Doença Crônica , Modelos Animais de Doenças , Feminino , Atividade Motora , Distribuição Aleatória , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Índice de Gravidade de Doença , Medula Espinal/imunologia , Fatores de Tempo , Vacinação
6.
Med Sci Monit ; 21: 1194-9, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25913248

RESUMO

BACKGROUND: Alpha1 anti-trypsin (α1-AT), a serine protease inhibitor synthesized in the liver, is a major circulating antiprotease that provides defense against proteolytic damage in several tissues. Its deficiency is associated with airflow obstruction. The present study aimed to explore the role of α1-AT as a biomarker of airflow performance in chronic liver disease (CLD). MATERIAL/METHODS: Serum α1-AT levels and lung function (spirometry) were evaluated in non-primary α1-AT-deficient, alcoholic CLD patients without evident respiratory limitations. RESULTS: Thirty-four patients with airflow obstruction (n=11), airflow restriction (n=12), and normal airflow (n=11, age-matched controls) were eligible. α1-AT was decreased in the airflow obstruction group. ROC-cutoff α1-AT=24 mg/dL effectively discriminated airflow obstruction (AUC=0.687) and was associated with a 10-fold higher risk (p=0.0007). CONCLUSIONS: Lower α1-AT increased the risk of airflow obstruction in CLD patients without primary α1-AT deficiency.


Assuntos
Hepatopatias Alcoólicas/sangue , Hepatopatias Alcoólicas/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/etiologia , Deficiência de alfa 1-Antitripsina/sangue , Deficiência de alfa 1-Antitripsina/fisiopatologia , alfa 1-Antitripsina/sangue , Adulto , Idoso , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Hepatopatias Alcoólicas/complicações , Pneumopatias Obstrutivas/sangue , Pneumopatias Obstrutivas/etiologia , Pneumopatias Obstrutivas/fisiopatologia , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fatores de Risco , Espirometria , Deficiência de alfa 1-Antitripsina/complicações
7.
J Gen Physiol ; 156(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38231124

RESUMO

Numerous elements involved in shear stress-induced signaling have been identified, recognizing their functions as mechanotransducing ion channels situated at cellular membranes. This form of mechanical signaling relies on transmembrane proteins and cytoplasmic proteins that restructure the cytoskeleton, contributing to mechanotransduction cascades. Notably, blood flow generates mechanical forces that significantly impact the structure and remodeling of blood vessels. The primary regulation of blood vessel responses occurs through hemodynamic forces acting on the endothelium. These mechanical events intricately govern endothelial biophysical, biochemical, and genetic responses. Endothelial cells, positioned on the intimal surface of blood vessels, have the capability to express components of the glycocalyx. This endothelial structure emerges as a pivotal factor in mechanotransduction and the regulation of vascular tone. The endothelial glycocalyx assumes diverse roles in both health and disease. Our findings propose a connection between the release of specific enzymes from the rat liver and variations in the hepatic blood flow/mass ratio. Importantly, this phenomenon is not correlated with liver necrosis. Consequently, this review serves as an exploration of the potential involvement of membrane proteins in a hypothetical mechanotransducing phenomenon capable of controlling the release of liver enzymes.


Assuntos
Células Endoteliais , Glicocálix , Animais , Ratos , Mecanotransdução Celular , Hemodinâmica , Membrana Celular , Proteínas de Membrana
8.
Front Mol Biosci ; 11: 1362305, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38654922

RESUMO

Hepatocyte growth factor (HGF) exhibits potent growth-inducing properties across various tissues, while epidermal growth factor (EGF) acts as a molecular integration point for diverse stimuli. HGF plays a crucial role in hepatic metabolism, tissue repair, and offers protective effects on epithelial and non-epithelial organs, in addition to its involvement in reducing apoptosis and inflammation, underscoring its anti-inflammatory capabilities. The HGF-Met system is instrumental in hepatic metabolism and enhancing insulin sensitivity in animal diabetes models. Similarly, the EGF and its receptor tyrosine kinase family (EGFR) are critical in regulating cell growth, proliferation, migration, and differentiation in both healthy and diseased states, with EGF also contributing to insulin sensitivity. In this observational study, we aimed to identify correlations between serum levels of HGF and EGF, insulin, glucagon, glucose, and primary serum lipids in patients with type 2 diabetes mellitus (DM), taking into account the impact of gender. We noted differences in the management of glucose, insulin, and glucagon between healthy men and women, potentially due to the distinct influences of sexual hormones on the development of type 2 DM. Additionally, metabolites such as glucose, albumin, direct bilirubin, nitrites, and ammonia might influence serum levels of growth factors and hormones. In summary, our results highlight the regulatory role of insulin and glucagon in serum glucose and lipids, along with variations in HGF and EGF levels, which are affected by gender. This link is especially significant in DM, where impaired cell proliferation or repair mechanisms lead to metabolic changes. The gender-based differences in growth factors point to their involvement in the pathophysiology of the disease.

9.
Biol Trace Elem Res ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676876

RESUMO

The presence of arsenic (As) and fluoride (F-) in drinking water is of concern due to the enormous number of individuals exposed to this condition worldwide. Studies in cultured cells and animal models have shown that As- or F-induced hepatotoxicity is primarily associated with redox disturbance and altered mitochondrial homeostasis. To explore the hepatotoxic effects of chronic combined exposure to As and F- in drinking water, pregnant CD-1 mice were exposed to 2 mg/L As (sodium arsenite) and/or 25 mg/L F- (sodium fluoride). The male offspring continued the exposure treatment up to 30 (P30) or 90 (P90) postnatal days. GSH levels, cysteine synthesis enzyme activities, and cysteine transporter levels were investigated in liver homogenates, as well as the expression of biomarkers of ferroptosis and mitochondrial biogenesis-related proteins. Serum transaminase levels and Hematoxylin-Eosin and Masson trichrome-stained liver tissue slices were examined. Combined exposure at P30 significantly reduced GSH levels and the mitochondrial transcription factor A (TFAM) expression while increasing lipid peroxidation, free Fe 2+, p53 expression, and serum ALT activity. At P90, the upregulation of cysteine uptake and synthesis was associated with a recovery of GSH levels. Nevertheless, the downregulation of TFAM continued and was now associated with a downstream inhibition of the expression of MT-CO2 and reduced levels of mtDNA and fibrotic liver damage. Our experimental approach using human-relevant doses gives evidence of the increased risk for early liver damage associated with elevated levels of As and F- in the diet during intrauterine and postnatal period.

10.
Metab Syndr Relat Disord ; 21(2): 115-121, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36787445

RESUMO

Background: The metabolic syndrome (MS) is associated with an increased production of nitrogen metabolites and elevated oxidative stress, which favors progression of nonalcoholic fatty liver disease (NAFLD). Subjects with the phenotype known as metabolically unhealthy obese (MUO) meet most of the MS cardiometabolic risk criteria and show a higher risk of advanced NAFLD severity, compared with the so-widely known metabolically healthy obese (MHO). Obese individuals with MS are more susceptible to abnormal lipid accumulation in different tissues, whereas oxidative stress and nitrogen metabolites are increased in MS and/or obesity. This study aimed to explore whether plasma- or liver tissue-determined biomarkers of nitrogen metabolism and oxidative stress relate to NAFLD severity and/or metabolic phenotype. Methods: This cross-sectional study included candidates for bariatric surgery with biopsy-proven NAFLD diagnosis and staging. For comparison, the study population was divided according to NAFLD damage (steatohepatitis F0-F1 vs. steatohepatitis F2-F4) and metabolic phenotype (MHO vs MUO, based on the MS criteria). Hepatic and plasma concentrations of nitrogen metabolites and oxidative stress biomarkers were determined by enzymatic kinetics assays, enzyme-linked immunosorbent assay, and Greiss reaction. Results: The study population (N = 45) was constituted by patients with obesity and higher prevalence of dyslipidemia, diabetes mellitus, and hypertension. According to plasma biomarkers, MUO phenotype was related to higher cardiometabolic risk; meanwhile, advanced NAFLD damage was related to higher glycated hemoglobin (HbA1c) and triglycerides. Elevated hepatic concentrations of ammonium, nitrites, arginine, and citrulline were found in MUO phenotype, but only higher plasma concentration of malondialdehyde was found as specifically related to advanced NAFLD damage. Conclusions: Circulating biomarkers of redox state were selectively related to advanced NAFLD damage, suggesting prognostic and therapeutic targets. Hepatic concentrations of nitrogen metabolism biomarkers may be more related to cardiometabolic risk.


Assuntos
Hipertensão , Síndrome Metabólica , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Síndrome Metabólica/complicações , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/epidemiologia , Estudos Transversais , Obesidade/epidemiologia , Biomarcadores , Hipertensão/complicações , Oxirredução , Estresse Oxidativo
11.
Mol Biomed ; 3(1): 5, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35079944

RESUMO

The purine molecular structure consists of fused pyrimidine and imidazole rings. Purines are main pieces that conform the structure of nucleic acids which rule the inheritance processes. Purines also work as metabolic intermediates in different cell functions and as messengers in the signaling pathways throughout cellular communication. Purines, mainly ATP and adenosine (ADO), perform their functional and pharmacological properties because of their structural/chemical characteristics that make them either targets of mutagenesis, mother frameworks for designing molecules with controlled effects (e.g. anti-cancer), or chemical donors (e.g., of methyl groups, which represent a potential chemoprotective action against cancer). Purines functions also come from their effect on specific receptors, channel-linked and G-protein coupled for ATP, and exclusively G-coupled receptors for ADO (also known as ADORAs), which are involved in cell signaling pathways, there, purines work as chemical messengers with autocrine, paracrine, and endocrine actions that regulate cell metabolism and immune response in tumor progression which depends on the receptor types involved in these signals. Purines also have antioxidant and anti-inflammatory properties and participate in the cell energy homeostasis. Therefore, purine physiology is important for a variety of functions relevant to cellular health; thus, when these molecules present a homeostatic imbalance, the stability and survival of the cellular systems become compromised.

12.
Antioxidants (Basel) ; 11(7)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883749

RESUMO

The liver metabolizes ethanol through three enzymatic pathways: alcohol dehydrogenase (ADH), cytochrome p450 (also called MEOS), and catalase. Alcohol dehydrogenase class I (ADH1) is considered the most important enzyme for the metabolism of ethanol, MEOS and catalase (CAT) are considered minor alternative pathways. However, contradicting experiments suggest that the non-ADH1 pathway may have a greater relevance for the metabolism of ethanol than previously thought. In some conditions, ethanol is predominately metabolized to acetaldehyde via cytochrome P450 family 2 (CYP2E1), which is involved in the generation of reactive oxygen species (ROS), mainly through electron leakage to oxygen to form the superoxide (O2•-) radical or in catalyzed lipid peroxidation. The CAT activity can also participate in the ethanol metabolism that produces ROS via ethanol directly reacting with the CAT-H2O2 complex, producing acetaldehyde and water and depending on the H2O2 availability, which is the rate-limiting component in ethanol peroxidation. We have shown that CAT actively participates in lactate-stimulated liver ethanol oxidation, where the addition of lactate generates H2O2, which is used by CAT to oxidize ethanol to acetaldehyde. Therefore, besides its known role as a catalytic antioxidant component, the primary role of CAT could be to function in the metabolism of xenobiotics in the liver.

13.
J Int Med Res ; 50(11): 3000605221137475, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36437534

RESUMO

OBJECTIVES: To determine whether metabolic phenotype is associated with the change in carotid intima-media thickness (CIMT) in patients undergoing bariatric /metabolic surgery (BMS). METHODS: We performed a case-control study of BMS candidates who had metabolically unhealthy obesity (MUO) or metabolically healthy obesity (MHO). We measured the change in CIMT during the 9 months following BMS. The plasma tumor necrosis factor-α, interleukin-1ß, adiponectin, leptin, nitric oxide (NO), vascular endothelial growth factor A (VEGF-A), and malondialdehyde concentrations were determined, adipocyte area was measured histologically, and adipose tissue area was estimated using computed tomography. RESULTS: Fifty-six patients (mean age 44.5 years, mean body mass index 44.9 kg/m2, 53% women, and 53% had MUO) were studied. Nine months following BMS, the MUO phenotype was not associated with a significant reduction in CIMT, and that of the MHO group was larger. In addition, fewer participants achieved a 10% reduction in CIMT in the MUO group. A CIMT reduction was associated with lower VEGF-A and NO in the MUO group, while that in the MHO group was associated with a higher NO concentration. CONCLUSION: The metabolic phenotype of patients may influence their change in CIMT following BMS, probably through circulating vasodilatory and pro-inflammatory molecules.


Assuntos
Cirurgia Bariátrica , Obesidade Metabolicamente Benigna , Feminino , Masculino , Humanos , Espessura Intima-Media Carotídea , Fator A de Crescimento do Endotélio Vascular , Estudos de Casos e Controles , Fatores de Risco , Obesidade Metabolicamente Benigna/metabolismo , Obesidade/metabolismo
14.
BMC Cell Biol ; 12: 3, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21244708

RESUMO

BACKGROUND: In the interphase nucleus of metazoan cells DNA is organized in supercoiled loops anchored to a nuclear matrix (NM). There is varied evidence indicating that DNA replication occurs in replication factories organized upon the NM and that DNA loops may correspond to the actual replicons in vivo. In normal rat liver the hepatocytes are arrested in G0 but they synchronously re-enter the cell cycle after partial-hepatectomy leading to liver regeneration in vivo. We have previously determined in quiescent rat hepatocytes that a 162 kbp genomic region containing members of the albumin gene family is organized into five structural DNA loops. RESULTS: In the present work we tracked down the movement relative to the NM of DNA sequences located at different points within such five structural DNA loops during the S phase and after the return to cellular quiescence during liver regeneration. Our results indicate that looped DNA moves sequentially towards the NM during replication and then returns to its original position in newly quiescent cells, once the liver regeneration has been achieved. CONCLUSIONS: Looped DNA moves in a sequential fashion, as if reeled in, towards the NM during DNA replication in vivo thus supporting the notion that the DNA template is pulled progressively towards the replication factories on the NM so as to be replicated. These results provide further evidence that the structural DNA loops correspond to the actual replicons in vivo.


Assuntos
Replicação do DNA , DNA/metabolismo , Matriz Nuclear/metabolismo , Animais , Células Cultivadas , Desoxirribonuclease I/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Cinética , Regeneração Hepática , Masculino , Ratos , Ratos Wistar , Fase S
15.
Liver Transpl ; 17(3): 334-43, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21384517

RESUMO

Although increased plasma enzyme activities could be diagnostic for tissue damage, the mechanisms controlling cellular enzyme release remain poorly understood. We found a selective and drastic elevation of serum enzyme activities accompanying rat liver regeneration after partial hepatectomy (PH), apparently controlled by a mechanism dependent on flow-bearing physical forces. In fact, this study assesses a putative role of calcium mobilization and nitric oxide (NO) production underlying rat liver enzyme release. The role of increased shear stress (by enhancing viscosity during perfusion) and the participation of cell calcium and NO were tested in isolated livers subjected to increasing flow rate. After PH, there was a drastic elevation of serum activities for liver enzyme markers, clearly predominating those of mitochondrial localization. Liver enzyme release largely depended on extracellular calcium entry, probably mediated by stretch-sensitive calcium channels, as well as by increasing NO production. However, these effects were differentially observed when comparing liver enzymes from cytoplasmic or mitochondrial compartments. Moreover, a possible role for cell-mediated mechanotransduction in liver enzyme release was suggested by increasing shear stress (high viscosity), which also selectively affected the release of the enzymes tested. Therefore, we show, for the first time, that flow-induced shear stress can control the amount of hepatic enzymes released into the bloodstream, which is largely regulated through modifications in cell calcium mobilization and production of liver NO, events markedly elevated in the proliferating rat liver.


Assuntos
Cálcio/metabolismo , Enzimas/sangue , Hepatectomia , Circulação Hepática , Regeneração Hepática , Fígado/cirurgia , Óxido Nítrico/metabolismo , Análise de Variância , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Inibidores Enzimáticos/farmacologia , Fígado/irrigação sanguínea , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Perfusão , Pressão , Ratos , Ratos Wistar , Estresse Mecânico , Fatores de Tempo
16.
Transpl Int ; 24(5): 489-500, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21261753

RESUMO

The present study was aimed to assess the effect of protein carbonylation (PC) in hepatic cells and effects of nonsteroidal anti-inflammatory drugs (NSAIDs) on indicators of tissue damage induced by liver ischemia-reperfusion injury (LIRI). Warm ischemia was performed by partial vascular occlusion during 90 min in Wistar rats. In serum, we determined the catalytic activity of Alanine Aminotransferase, Aspartate Aminotransferase, Lacticate Dehydrogenase, and Ornithine Carbamoyltransferase. In liver samples, we studied cellular alterations by means of histologic studies, lipid peroxidation, PC by immunohistochemistry, apoptosis and reactive oxygen species in bile by electron paramagnetic resonance. Based on PC data, sinusoidal endothelial cells (SEC) and Kupffer cells (KC) were the first to exhibit LIRI-associated oxidative damage and prior to parenchymal cells. Administration of piroxicam or meloxicam during the pre-ischemic period produced a highly significant decrease in all studied injury indicators. No significant differences were revealed between the protective action of the two drugs. The data shown here suggest the potential use of NSAIDs such as piroxicam or meloxicam in minimizing ischemic event-caused damage in liver. We also propose that PC may be employed as an adequate tool to assess tissue damage after oxidative stress.


Assuntos
Carbono/química , Células Endoteliais/citologia , Células de Kupffer/metabolismo , Fígado/metabolismo , Piroxicam/farmacologia , Traumatismo por Reperfusão , Tiazinas/farmacologia , Tiazóis/farmacologia , Alanina Transaminase/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Aspartato Aminotransferases/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Meloxicam , Ornitina Carbamoiltransferase/metabolismo , Estresse Oxidativo , Proteínas/metabolismo , Ratos , Ratos Wistar
17.
Antioxidants (Basel) ; 10(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34829598

RESUMO

The number of patients afflicted by type 2 diabetes and its morbidities has increased alarmingly, becoming the cause of many deaths. Normally, during nutrient intake, insulin secretion is increased and glucagon secretion is repressed, but when plasma glucose concentration increases, a state of prediabetes occurs. High concentration of plasma glucose breaks the redox balance, inducing an oxidative stress that promotes chronic inflammation, insulin resistance, and impaired insulin secretion. In the same context, obesity is one of the most crucial factors inducing insulin resistance, inflammation, and contributing to the onset of type 2 diabetes. Measurements of metabolites like glucose, fructose, amino acids, and lipids exhibit significant predictive associations with type 2 diabetes or a prediabetes state and lead to changes in plasma metabolites that could be selectively affected by gender and age. In terms of gender, women and men have biological dissimilarities that might have an important role for the development, diagnosis, therapy, and prevention of type 2 diabetes, obesity, and relevant hazards in both genders, for type 2 diabetes. Therefore, the present review attempts to analyze the influence of gender on the relationships among inflammatory events, oxidative stress, and metabolic alterations in patients undergoing obesity and/or type 2 diabetes.

18.
Sci Rep ; 11(1): 11666, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083675

RESUMO

The exposure to extremely low-frequency electromagnetic fields (EMFs) could adversely affect the endocrine system and cellular proliferative response. Nonetheless, the use of 60-Hz EMFs in the form of magneto-therapy exerts beneficial actions on human health but can also induce hyperglycaemia. Therefore, the present study was aimed to search for metabolic responses of fed or fasted male rats to a single EMF exposure. We performed a 15 min-single exposure to 60-Hz (3.8 mT, intensity) EMF, and determined serum levels of glucose, lipids, and indicators of cellular redox state and energy parameters. A single exposure to a 60-Hz EMF induced hyperglycaemia in both animal groups, and an attenuated second serum insulin peak. The 60-Hz EMF also decreased free fatty acids and lactate serum levels, oppositely increasing pyruvate and acetoacetate levels. Significant increases in blood glucose level and rat's glucose metabolism were related to a more oxidized cellular redox state and variations in insulin and glucagon secretion. The 60-Hz EMF's effects were not modified in animals previously subjected to chronic EMFs exposure (14 days). In conclusion, increased serum glucose levels and glucose metabolism induced by a single 60-Hz EMF exposure were closely related to the cellular redox state and the insulin/glucagon ratio.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Glucagon/sangue , Hiperglicemia/etiologia , Hiperglicemia/metabolismo , Insulina/sangue , Animais , Biomarcadores , Modelos Animais de Doenças , Suscetibilidade a Doenças , Metabolismo Energético , Jejum , Hiperglicemia/sangue , Ácido Láctico/sangue , Lipídeos/sangue , Metabolômica , Oxirredução , Ácido Pirúvico/sangue , Ratos
19.
Biochem Pharmacol ; 188: 114498, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33675773

RESUMO

The aim of the present study was to elucidate how fructose is able to increase the rate of ethanol metabolism in the liver, an observation previously termed the fructose effect. Previous studies suggest that an increase in ATP consumption driven by glucose synthesis from fructose stimulates the oxidation of NADH in the mitochondrial respiratory chain, allowing faster oxidation of ethanol by alcohol dehydrogenase; however, this idea has been frequently challenged. We tested the effects of fructose, sorbose and tagatose both in vitro and in vivo. Both ethanol and each sugar were either added to isolated hepatocytes or injected intraperitoneally in the rat. In the in vitro experiments, samples were taken from the hepatocyte suspension in a time-dependent manner and deproteinized with perchloric acid. In the in vivo experiments, blood samples were taken every 15 min and the metabolites were determined in the plasma. These metabolites include ethanol, glucose, glycerol, sorbitol, lactate, fructose and sorbose. Ethanol oxidation by rat hepatocytes was increased by more than 50% with the addition of fructose. The stimulation was accompanied by increased glucose, glycerol, lactate and sorbitol production. A similar effect was observed with sorbose, while tagatose had no effect. The same pattern was observed in the in vivo experiments. This effect was abolished by inhibiting alcohol dehydrogenase with 4-methylpyrazole, whereas inhibition of the respiratory chain with cyanide did not affect the fructose effect. In conclusion, present results provide evidence that, by reducing glyceraldehyde and glycerol and fructose to sorbitol, respectively, NADH is consumed, allowing an increase in the elimination of ethanol. Hence, this effect is not linked to a stimulation of mitochondrial re-oxidation of NADH driven by ATP consumption.


Assuntos
Etanol/metabolismo , Frutose/administração & dosagem , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Taxa de Depuração Metabólica/efeitos dos fármacos , Álcool Desidrogenase/antagonistas & inibidores , Álcool Desidrogenase/metabolismo , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Injeções Intraperitoneais , Masculino , Taxa de Depuração Metabólica/fisiologia , Ratos
20.
Antioxidants (Basel) ; 10(9)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34573076

RESUMO

We have developed and characterized a model of isoproterenol (ISO)-induced myocardial necrosis, identifying three stages of cardiac damage: a pre-infarction (0-12 h), infarction (24 h), and post-infarction period (48-96 h). Using this model, we have previously found alterations in calcium homeostasis and their relationship with oxidant stress in mitochondria, which showed deficient oxygen consumption and coupled ATP synthesis. Therefore, the present study was aimed at assessing the mitochondrial ability to transport and oxidize cytoplasmic reducing equivalents (NADH), correlating the kinetic parameters of the malate-aspartate shuttle, oxidant stress, and mitochondrial functionality. Our results showed only discreet effects during the cardiotoxic ISO action on the endogenous malate-aspartate shuttle activity, suggesting that endogenous mitochondrial NADH oxidation capacity (Nohl dehydrogenase) was not affected by the cellular stress. On the contrary, the reconstituted system showed significant enhancement in maximal capacity of the malate-aspartate shuttle activity only at later times (post-infarction period), probably as a compensatory part of cardiomyocytes' response to the metabolic and functional consequences of the infarcted tissue. Therefore, these findings support the notion that heart damage associated with myocardial infarction suffers a set of sequential biochemical and metabolic modifications within cardiomyocytes, where mitochondrial activity, controlling the redox state, could play a relevant role.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa