Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Neuropsychopharmacol ; 18(1)2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25522379

RESUMO

BACKGROUND: Use of synthetic cathinones, which are designer stimulants found in "bath salts," has increased dramatically in recent years. Following governmental bans of methylenedioxypyrovalerone, mephedrone, and methylone, a second generation of synthetic cathinones with unknown abuse liability has emerged as replacements. METHODS: Using a discrete trials current intensity threshold intracranial self-stimulation procedure, the present study assessed the effects of 2 common second-generation synthetic cathinones, α-pyrrolidinopentiophenone (0.1-5 mg/kg) and 4-methyl-N-ethcathinone (1-100 mg/kg) on brain reward function. Methamphetamine (0.1-3 mg/kg) was also tested for comparison purposes. RESULTS: Results revealed both α-pyrrolidinopentiophenone and 4-methyl-N-ethcathinone produced significant intracranial self-stimulation threshold reductions similar to that of methamphetamine. α-Pyrrolidinopentiophenone (1 mg/kg) produced a significant maximal reduction in intracranial self-stimulation thresholds (~19%) most similar to maximal reductions produced by methamphetamine (1 mg/kg, ~20%). Maximal reductions in intracranial self-stimulation thresholds produced by 4-methyl-N-ethcathinone were observed at 30 mg/kg (~15%) and were comparable with those observed with methamphetamine and α-pyrrolidinopentiophenone tested at the 0.3-mg/kg dose (~14%). Additional analysis of the ED50 values from log-transformed data revealed the rank order potency of these drugs as methamphetamine ≈ α-pyrrolidinopentiophenone>4-methyl-N-ethcathinone. CONCLUSIONS: These data suggest that the newer second-generation synthetic cathinones activate the brain reward circuitry and thus may possess a similar degree of abuse potential as prototypical illicit psychostimulants such as methamphetamine as well as the first generation synthetic cathinone methylenedioxypyrovalerone, as previously reported.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Pentanonas/farmacologia , Pirrolidinas/farmacologia , Autoestimulação/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Estimulantes do Sistema Nervoso Central/química , Relação Dose-Resposta a Droga , Drogas Ilícitas , Modelos Lineares , Masculino , Metanfetamina/química , Metanfetamina/farmacologia , Estrutura Molecular , Pentanonas/química , Pirrolidinas/química , Ratos Sprague-Dawley
2.
JCI Insight ; 7(15)2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35737458

RESUMO

Circulating monocytes have emerged as key regulators of the neuroinflammatory milieu in a number of neuropathological disorders. Ephrin type A receptor 4 (Epha4) receptor tyrosine kinase, a prominent axon guidance molecule, has recently been implicated in the regulation of neuroinflammation. Using a mouse model of brain injury and a GFP BM chimeric approach, we found neuroprotection and a lack of significant motor deficits marked by reduced monocyte/macrophage cortical infiltration and an increased number of arginase-1+ cells in the absence of BM-derived Epha4. This was accompanied by a shift in monocyte gene profile from pro- to antiinflammatory that included increased Tek (Tie2 receptor) expression. Inhibition of Tie2 attenuated enhanced expression of M2-like genes in cultured Epha4-null monocytes/macrophages. In Epha4-BM-deficient mice, cortical-isolated GFP+ monocytes/macrophages displayed a phenotypic shift from a classical to an intermediate subtype, which displayed reduced Ly6chi concomitant with increased Ly6clo- and Tie2-expressing populations. Furthermore, clodronate liposome-mediated monocyte depletion mimicked these effects in WT mice but resulted in attenuation of phenotype in Epha4-BM-deficient mice. This demonstrates that monocyte polarization not overall recruitment dictates neural tissue damage. Thus, coordination of monocyte proinflammatory phenotypic state by Epha4 is a key regulatory step mediating brain injury.


Assuntos
Lesões Encefálicas , Monócitos , Humanos , Lesões Encefálicas/metabolismo , Efrinas/metabolismo , Monócitos/metabolismo , Fenótipo , Receptor EphB2/metabolismo , Animais , Camundongos
3.
Adv Biosyst ; 4(1): e1900225, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-32293127

RESUMO

Here, a 3D printed multiplexed competitive migration assay is reported for characterizing a chemotactic response in the presence of multiple spatially distributed chemoattractants. The utility of the assay is demonstrated by examining the chemotactic response of human glioblastoma cells to spatially opposing chemotactic gradients of epidermal growth factor (EGF) and bradykinin (BK). Competitive migration assays involving spatially opposing gradients of EGF and BK that are optimized in the absence of the second chemoattractant show that 46% more glioblastoma cells migrate toward EGF sources. The migration velocities of human glioblastoma cells toward EGF and BK sources are reduced by 7.6 ± 2.2% and 11.6 ± 6.3% relative to those found in the absence of the spatially opposing chemoattractant. This work provides new insight to the chemotactic response associated with glioblastoma-vasculature interactions and a versatile, user-friendly platform for characterizing the chemotactic response of cells in the presence of multiple spatially distributed chemoattractants.


Assuntos
Ensaios de Migração Celular , Fatores Quimiotáticos/farmacologia , Quimiotaxia/efeitos dos fármacos , Impressão Tridimensional , Bradicinina/farmacologia , Linhagem Celular Tumoral , Ensaios de Migração Celular/instrumentação , Ensaios de Migração Celular/métodos , Fator de Crescimento Epidérmico/farmacologia , Desenho de Equipamento , Glioblastoma , Humanos , Técnicas Analíticas Microfluídicas/instrumentação
4.
Elife ; 82019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31433295

RESUMO

Brain-derived neurotrophic factor (BDNF) is a critical growth factor involved in the maturation of the CNS, including neuronal morphology and synapse refinement. Herein, we demonstrate astrocytes express high levels of BDNF's receptor, TrkB (in the top 20 of protein-coding transcripts), with nearly exclusive expression of the truncated isoform, TrkB.T1, which peaks in expression during astrocyte morphological maturation. Using a novel culture paradigm, we show that astrocyte morphological complexity is increased in the presence of BDNF and is dependent upon BDNF/TrkB.T1 signaling. Deletion of TrkB.T1, globally and astrocyte-specifically, in mice revealed morphologically immature astrocytes with significantly reduced volume, as well as dysregulated expression of perisynaptic genes associated with mature astrocyte function. Indicating a role for functional astrocyte maturation via BDNF/TrkB.T1 signaling, TrkB.T1 KO astrocytes do not support normal excitatory synaptogenesis or function. These data suggest a significant role for BDNF/TrkB.T1 signaling in astrocyte morphological maturation, a critical process for CNS development.


Assuntos
Astrócitos/citologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular , Glicoproteínas de Membrana/metabolismo , Morfogênese , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Glicoproteínas de Membrana/deficiência , Camundongos , Camundongos Knockout , Isoformas de Proteínas/metabolismo , Proteínas Tirosina Quinases/deficiência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa