Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(15): e2109370119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35385351

RESUMO

Collateral sensitivity is an evolutionary trade-off whereby acquisition of the adaptive phenotype of resistance to an antibiotic leads to the nonadaptive increased susceptibility to another. The feasibility of harnessing such a trade-off to design evolutionary-based approaches for treating bacterial infections has been studied using model strains. However, clinical application of collateral sensitivity requires its conservation among strains presenting different mutational backgrounds. Particularly relevant is studying collateral sensitivity robustness of already-antibiotic-resistant mutants when challenged with a new antimicrobial, a common situation in clinics that has hardly been addressed. We submitted a set of diverse Pseudomonas aeruginosa antibiotic-resistant mutants to short-term evolution in the presence of different antimicrobials. Ciprofloxacin selects different clinically relevant resistance mutations in the preexisting resistant mutants, which gave rise to the same, robust, collateral sensitivity to aztreonam and tobramycin. We then experimentally determined that alternation of ciprofloxacin with aztreonam is more efficient than ciprofloxacin­tobramycin alternation in driving the extinction of the analyzed antibiotic-resistant mutants. Also, we show that the combinations ciprofloxacin­aztreonam or ciprofloxacin­tobramycin are the most effective strategies for eliminating the tested P. aeruginosa antibiotic-resistant mutants. These findings support that the identification of conserved collateral sensitivity patterns may guide the design of evolution-based strategies to treat bacterial infections, including those due to antibiotic-resistant mutants. Besides, this is an example of phenotypic convergence in the absence of parallel evolution that, beyond the antibiotic-resistance field, could facilitate the understanding of evolution processes, where the selective forces giving rise to new, not clearly adaptive phenotypes remain unclear.


Assuntos
Antibacterianos , Ciprofloxacina , Sensibilidade Colateral a Medicamentos , Farmacorresistência Bacteriana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Sensibilidade Colateral a Medicamentos/genética , Farmacorresistência Bacteriana/genética , Humanos , Testes de Sensibilidade Microbiana , Mutação , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética
2.
World J Microbiol Biotechnol ; 40(7): 226, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822187

RESUMO

Multidrug efflux pumps are protein complexes located in the cell envelope that enable bacteria to expel, not only antibiotics, but also a wide array of molecules relevant for infection. Hence, they are important players in microbial pathogenesis. On the one hand, efflux pumps can extrude exogenous compounds, including host-produced antimicrobial molecules. Through this extrusion, pathogens can resist antimicrobial agents and evade host defenses. On the other hand, efflux pumps also have a role in the extrusion of endogenous compounds, such as bacterial intercommunication signaling molecules, virulence factors or metabolites. Therefore, efflux pumps are involved in the modulation of bacterial behavior and virulence, as well as in the maintenance of the bacterial homeostasis under different stresses found within the host. This review delves into the multifaceted roles that efflux pumps have, shedding light on their impact on bacterial virulence and their contribution to bacterial infection. These observations suggest that strategies targeting bacterial efflux pumps could both reinvigorate the efficacy of existing antibiotics and modulate the bacterial pathogenicity to the host. Thus, a comprehensive understanding of bacterial efflux pumps can be pivotal for the development of new effective strategies for the management of infectious diseases.


Assuntos
Antibacterianos , Bactérias , Infecções Bacterianas , Proteínas de Bactérias , Farmacorresistência Bacteriana Múltipla , Proteínas de Membrana Transportadoras , Fatores de Virulência , Antibacterianos/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Bactérias/metabolismo , Bactérias/metabolismo , Bactérias/patogenicidade , Infecções Bacterianas/microbiologia , Virulência , Fatores de Virulência/metabolismo , Humanos , Animais
3.
Mol Biol Evol ; 39(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35291010

RESUMO

Trade-offs of antibiotic resistance evolution, such as fitness cost and collateral sensitivity (CS), could be exploited to drive evolution toward antibiotic susceptibility. Decline of resistance may occur when resistance to other drug leads to CS to the first one and when compensatory mutations, or genetic reversion of the original ones, reduce fitness cost. Here we describe the impact of antibiotic-free and sublethal environments on declining ceftazidime resistance in different Pseudomonas aeruginosa resistant mutants. We determined that decline of ceftazidime resistance occurs within 450 generations, which is caused by newly acquired mutations and not by reversion of the original ones, and that the original CS of these mutants is preserved. In addition, we observed that the frequency and degree of this decline is contingent on genetic background. Our results are relevant to implement evolution-based therapeutic approaches, as well as to redefine global policies of antibiotic use, such as drug cycling.


Assuntos
Antibacterianos , Ceftazidima , Antibacterianos/farmacologia , Ceftazidima/farmacologia , Farmacorresistência Bacteriana/genética , Patrimônio Genético , Pseudomonas aeruginosa/genética
4.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569678

RESUMO

Pseudomonas aeruginosa is a ubiquitous nosocomial opportunistic pathogen that harbors many virulence determinants. Part of P. aeruginosa success colonizing a variety of habitats resides in its metabolic robustness and plasticity, which are the basis of its capability of adaptation to different nutrient sources and ecological conditions, including the infected host. Given this situation, it is conceivable that P. aeruginosa virulence might be, at least in part, under metabolic control, in such a way that virulence determinants are produced just when needed. Indeed, it has been shown that the catabolite repression control protein Crc, which together with the RNA chaperon Hfq regulates the P. aeruginosa utilization of carbon sources at the post-transcriptional level, also regulates, directly or indirectly, virulence-related processes in P. aeruginosa. Among them, Crc regulates P. aeruginosa cytotoxicity, likely by modulating the activity of the Type III Secretion System (T3SS), which directly injects toxins into eukaryotic host cells. The present work shows that the lack of Crc produces a Type III Secretion-defective phenotype in P. aeruginosa. The observed impairment is a consequence of a reduced expression of the genes encoding the T3SS, together with an impaired secretion of the proteins involved. Our results support that the impaired T3SS activity of the crc defective mutant is, at least partly, a consequence of a defective protein export, probably due to a reduced proton motive force. This work provides new information about the complex regulation of the expression and the activity of the T3SS in P. aeruginosa. Our results highlight the need of a robust bacterial metabolism, which is defective in the ∆crc mutant, to elicit complex and energetically costly virulence strategies, as that provided by the T3SS.


Assuntos
Pseudomonas aeruginosa , Sistemas de Secreção Tipo III , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Virulência/genética , Pseudomonas aeruginosa/metabolismo , Fatores de Virulência/metabolismo , Fenômenos Fisiológicos Celulares , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
5.
Environ Microbiol ; 24(3): 1279-1293, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34666420

RESUMO

Antibiotic pollution of non-clinical environments might have a relevant impact on human health if resistant pathogens are selected. However, this potential risk is often overlooked, since drug concentrations in nature are usually below their minimal inhibitory concentrations (MICs). Albeit, antibiotic resistant bacteria can be selected even at sub-MIC concentrations, in a range known as the sub-MIC selective window. Using short-term evolution experiments, we have determined the sub-MIC selective windows of the opportunistic pathogen Pseudomonas aeruginosa for seven antibiotics of clinical relevance, finding the ones of quinolones to be the widest, and the ones of polymyxin B and imipenem, the narrowest. Clinically relevant multidrug-resistant mutants arose within the sub-MIC selective windows of most antibiotics tested, being some of these phenotypes mediated by efflux pumps' activity. The fact that the concentration of antibiotics reported in aquatic ecosystems - colonizable by P. aeruginosa - are, in occasions, higher than the ones that select multidrug-resistant mutants in our assays, has implications for understanding the role of different ecosystems and conditions in the emergence of antibiotic resistance from a One-Health perspective. Further, it reinforces the importance of procuring accurate information on the sub-MIC selective windows for drugs of clinical value in pathogens with environmental niches.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Ecossistema , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética
6.
Adv Exp Med Biol ; 1386: 117-143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36258071

RESUMO

Pseudomonas is a bacterial genus, with a bona fide environmental habitat that comprises different species, some of them causing diseases in humans and plants, as well as some strains with biotechnological potential. Amongst them, Pseudomonas aeruginosa is currently one of the most important nosocomial pathogens. In addition, this microorganism is a prevalent cause of chronic infections in cystic fibrosis patients and in people suffering from chronic obstructive pulmonary disease. The success of P. aeruginosa in colonising different habitats largely relies on its metabolic versatility and robustness. Besides, this bacterial pathogen harbours in its core genome a large set of virulence determinants that allows it to colonise/infect a variety of hosts, from unicellular organisms to humans. Nevertheless, these are not just the only conditions needed for infecting patients at hospitals. Taking into consideration that infected patients are regularly under antibiotic treatment, the ability to avoid antibiotics' action is also needed. In this sense, P. aeruginosa displays a characteristic low susceptibility to several antibiotics currently used in therapy. This is due to the reduced permeability of its cellular envelopes and the presence in its genome of an arrangement of genes encoding multidrug efflux pumps and antibiotic-inactivating enzymes that contribute to its resilience to antibiotics. Besides intrinsic resistance, P. aeruginosa is able to evolve towards antibiotic resistance through mutations (particularly relevant in the case of chronic infections) and via acquisition of antibiotic resistance genes. It is worth mentioning that acquired resistance is not the only venue that P. aeruginosa has for avoiding the action of antibiotics. Transient resistance can also confer this phenotype. Indeed, the induction of the expression of intrinsic resistance genes by conditions or compounds that P. aeruginosa could face during infection can compromise the effectiveness of antibiotics for treating such infections. In addition, tolerant cells able to survive during the exposure to bactericidal antibiotics without an increase in their antibiotic resistance phenotype are found as well in these patients, and they are the prelude of the evolution towards antibiotic resistance. Finally, P. aeruginosa biofilms, frequently encountered in the lungs of cystic fibrosis patients, in prostheses, or in catheters, present low antibiotic susceptibility and are associated with recalcitrance and disease worsening.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Humanos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/microbiologia , Pseudomonas , Pseudomonas aeruginosa/genética , Resistência Microbiana a Medicamentos/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana
7.
Environ Microbiol ; 23(12): 7396-7411, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33818002

RESUMO

Multidrug efflux pumps are ancient elements encoded in every genome, from bacteria to humans. In bacteria, in addition to antibiotics, efflux pumps extrude a wide range of substrates, including quorum sensing signals, bacterial metabolites, or plant-produced compounds. This indicates that their original functions may differ from their recently acquired role in the extrusion of antibiotics during human infection. Concerning plant-produced compounds, some of them are substrates and inducers of the same efflux pump, suggesting a coordinated plant/bacteria coevolution. Herein we analyse the ability of 1243 compounds from a Natural Product-Like library to induce the expression of P. aeruginosa mexCD-oprJ or mexAB-oprM efflux pumps' encoding genes. We further characterized natural-like compounds that do not trigger antibiotic resistance in P. aeruginosa and that act as virulence inhibitors, choosing those that were not only inducers but substrates of the same efflux pump. Four compounds impair swarming motility, exotoxin secretion through the Type 3 Secretion System (T3SS) and the ability to kill Caenorhabditis elegans, which might be explained by the downregulation of genes encoding flagellum and T3SS. Our results emphasize the possibility of discovering new anti-virulence drugs by screening natural or natural-like libraries for compounds that behave as both, inducers and substrates of efflux pumps.


Assuntos
Proteínas da Membrana Bacteriana Externa , Pseudomonas aeruginosa , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Virulência
8.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360847

RESUMO

The use and misuse of antibiotics have made antibiotic-resistant bacteria widespread nowadays, constituting one of the most relevant challenges for human health at present. Among these bacteria, opportunistic pathogens with an environmental, non-clinical, primary habitat stand as an increasing matter of concern at hospitals. These organisms usually present low susceptibility to antibiotics currently used for therapy. They are also proficient in acquiring increased resistance levels, a situation that limits the therapeutic options for treating the infections they cause. In this article, we analyse the most predominant opportunistic pathogens with an environmental origin, focusing on the mechanisms of antibiotic resistance they present. Further, we discuss the functions, beyond antibiotic resistance, that these determinants may have in the natural ecosystems that these bacteria usually colonize. Given the capacity of these organisms for colonizing different habitats, from clinical settings to natural environments, and for infecting different hosts, from plants to humans, deciphering their population structure, their mechanisms of resistance and the role that these mechanisms may play in natural ecosystems is of relevance for understanding the dissemination of antibiotic resistance under a One-Health point of view.


Assuntos
Farmacorresistência Bacteriana Múltipla , Infecções Oportunistas , Acinetobacter baumannii , Aeromonas , Animais , Burkholderia cepacia , Ecossistema , Humanos , Pseudomonas aeruginosa , Shewanella , Stenotrophomonas maltophilia
9.
Mol Biol Evol ; 36(10): 2238-2251, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31228244

RESUMO

Different works have explored independently the evolution toward antibiotic resistance and the role of eco-adaptive mutations in the adaptation to a new habitat (as the infected host) of bacterial pathogens. However, knowledge about the connection between both processes is still limited. We address this issue by comparing the evolutionary trajectories toward antibiotic resistance of a Pseudomonas aeruginosa lasR defective mutant and its parental wild-type strain, when growing in presence of two ribosome-targeting antibiotics. Quorum-sensing lasR defective mutants are selected in P. aeruginosa populations causing chronic infections. Further, we observed they are also selected in vitro as a first adaptation for growing in culture medium. By using experimental evolution and whole-genome sequencing, we found that the evolutionary trajectories of P. aeruginosa in presence of these antibiotics are different in lasR defective and in wild-type backgrounds, both at the phenotypic and the genotypic levels. Recreation of a set of mutants in both genomic backgrounds (either wild type or lasR defective) allowed us to determine the existence of negative epistatic interactions between lasR and antibiotic resistance determinants. These epistatic interactions could lead to mutual contingency in the evolution of antibiotic resistance when P. aeruginosa colonizes a new habitat in presence of antibiotics. If lasR mutants are selected first, this would constraint antibiotic resistance evolution. Conversely, when resistance mutations (at least those studied in the present work) are selected, lasR mutants may not be selected in presence of antibiotics. These results underlie the importance of contingency and epistatic interactions in modulating antibiotic resistance evolution.


Assuntos
Evolução Biológica , Farmacorresistência Bacteriana/genética , Pseudomonas aeruginosa/genética , Percepção de Quorum , Mutação , Seleção Genética , Tigeciclina , Tobramicina
10.
Artigo em Inglês | MEDLINE | ID: mdl-31501142

RESUMO

The study of the acquisition of antibiotic resistance (AR) has mainly focused on inherited processes, namely, mutations and acquisition of AR genes. However, inducible, noninheritable AR has received less attention, and most information in this field derives from the study of antibiotics as inducers of their associated resistance mechanisms. Less is known about nonantibiotic compounds or situations that can induce AR during infection. Multidrug resistance efflux pumps are a category of AR determinants characterized by the tight regulation of their expression. Their contribution to acquired AR relies in their overexpression. Here, we analyzed potential inducers of the expression of the chromosomally encoded Pseudomonas aeruginosa clinically relevant efflux pumps, MexCD-OprJ and MexAB-OprM. For this purpose, we developed a set of luxCDABE-based P. aeruginosa biosensor strains, which allows the high-throughput analysis of compounds able to modify the expression of these efflux pumps. Using these strains, we analyzed a set of 240 compounds present in Biolog phenotype microarrays. Several inducers of the expression of the genes that encode these efflux pumps were found. The study focused in dequalinium chloride, procaine, and atropine, compounds that can be found in clinical settings. Using real-time PCR, we confirmed that these compounds indeed induce the expression of the mexCD-oprJ operon. In addition, P. aeruginosa presents lower susceptibility to ciprofloxacin (a MexCD-OprJ substrate) when dequalinium chloride, procaine, or atropine are present. This study emphasizes the need to study compounds that can trigger transient AR during antibiotic treatment, a phenotype difficult to discover using classical susceptibility tests.


Assuntos
Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Genes MDR/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Pseudomonas aeruginosa/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
11.
Artigo em Inglês | MEDLINE | ID: mdl-30858210

RESUMO

High-throughput screening of transposon insertion libraries is a useful strategy for unveiling bacterial genes whose inactivation results in an altered susceptibility to antibiotics. A potential drawback of these studies is they are usually based on just one model antibiotic for each structural family, under the assumption that the results can be extrapolated to all members of said family. To determine if this simplification is appropriate, we have analyzed the susceptibility of mutants of Pseudomonas aeruginosa to four aminoglycosides. Our results indicate that each mutation produces different effects on susceptibility to the tested aminoglycosides, with only two mutants showing similar changes in the susceptibility to all studied aminoglycosides. This indicates that the role of a particular gene in the resistome of a given antibiotic should not be generalized to other members of the same structural family. Five aminoglycoside-hypersusceptible mutants inactivating glnD, hflK, PA2798, PA3016, and hpf were chosen for further analysis in order to elucidate if lower aminoglycoside susceptibility correlates with cross-hypersusceptibility to other antibiotics and with impaired virulence. Our results indicate that glnD inactivation leads to increased cross-susceptibility to different antibiotics. The mutant in this gene is strongly impaired in virulence traits such as pyocyanin production, biofilm formation, elastase activity, and swarming motility and the ability to kill Caenorhabditis elegans Thus, GlnD might be an interesting target for developing antibiotic coadjuvants with antiresistance and antivirulence properties against P. aeruginosa.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética , Virulência/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-30082283

RESUMO

Ceftazidime-avibactam is a combination of ß-lactam/ß-lactamase inhibitor, the use of which is restricted to some clinical cases, including cystic fibrosis patients infected with multidrug-resistant Pseudomonas aeruginosa, in which mutation is the main driver of resistance. This study aims to predict the mechanisms of mutation-driven resistance that are selected for when P. aeruginosa is challenged with either ceftazidime or ceftazidime-avibactam. For this purpose, P. aeruginosa PA14 was submitted to experimental evolution in the absence of antibiotics and in the presence of increasing concentrations of ceftazidime or ceftazidime-avibactam for 30 consecutive days. Final populations were analyzed by whole-genome sequencing. All evolved populations reached similar levels of ceftazidime resistance. In addition, they were more susceptible to amikacin and produced pyomelanin. A first event in this evolution was the selection of large chromosomal deletions containing hmgA (involved in pyomelanin production), galU (involved in ß-lactams resistance), and mexXY-oprM (involved in aminoglycoside resistance). Besides mutations in mpl and dacB that regulate ß-lactamase expression, mutations related to MexAB-OprM overexpression were prevalent. Ceftazidime-avibactam challenge selected mutants in the putative efflux pump PA14_45890 and PA14_45910 and in a two-component system (PA14_45870 and PA14_45880), likely regulating its expression. All populations produced pyomelanin and were more susceptible to aminoglycosides, likely due to the selection of large chromosomal deletions. Since pyomelanin-producing mutants presenting similar deletions are regularly isolated from infections, the potential aminoglycoside hypersusceptiblity and reduced ß-lactam susceptibility of pyomelanin-producing P. aeruginosa should be taken into consideration for treating infections caused by these isolates.


Assuntos
Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Ceftazidima/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/genética , Combinação de Medicamentos , Mutação/genética
13.
Drug Resist Updat ; 28: 13-27, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27620952

RESUMO

Multidrug efflux pumps constitute a group of transporters that are ubiquitously found in any organism. In addition to other functions with relevance for the cell physiology, efflux pumps contribute to the resistance to compounds used for treating different diseases, including resistance to anticancer drugs, antibiotics or antifungal compounds. In the case of antimicrobials, efflux pumps are major players in both intrinsic and acquired resistance to drugs currently in use for the treatment of infectious diseases. One important aspect not fully explored of efflux pumps consists on the identification of effectors able to induce their expression. Indeed, whereas the analysis of clinical isolates have shown that mutants overexpressing these resistance elements are frequently found, less is known on the conditions that may trigger expression of efflux pumps, hence leading to transient induction of resistance in vivo, a situation that is barely detectable using classical susceptibility tests. In the current article we review the structure and mechanisms of regulation of the expression of bacterial and fungal efflux pumps, with a particular focus in those for which a role in clinically relevant resistance has been reported.


Assuntos
Infecções Bacterianas/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla/genética , Farmacorresistência Fúngica Múltipla/genética , Regulação Bacteriana da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genes MDR , Micoses/tratamento farmacológico , Anti-Infecciosos/uso terapêutico , Infecções Bacterianas/microbiologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Fúngica Múltipla/efeitos dos fármacos , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungos/efeitos dos fármacos , Fungos/genética , Fungos/crescimento & desenvolvimento , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/crescimento & desenvolvimento , Humanos , Micoses/microbiologia
14.
J Antimicrob Chemother ; 69(11): 2972-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25185138

RESUMO

OBJECTIVES: Previous work showed that PA5542 inactivation increases Pseudomonas aeruginosa 59.20 susceptibility to carbapenems. The objective of the current study was to purify PA5542, to determine its role in carbapenem resistance and to analyse the kinetic constants of this putative new ß-lactamase. METHODS: PA5542 was cloned and expressed in Escherichia coli. The enzyme was purified by affinity as a GST fusion protein and, after that, cleaved to remove the GST tag. ß-Lactamase activity was measured spectrophotometrically using imipenem as substrate. Susceptibility to antibiotics was determined by Etest. Zn(2+) was added when needed. The expression levels of PA5542, ampC, poxB, mexA and oprD were determined by real-time RT-PCR. RESULTS: Lack of PA5542 increases P. aeruginosa 59.20 susceptibility to carbapenems and its overexpression reduces E. coli susceptibility to these ß-lactams. PA5542 is highly conserved in all sequenced P. aeruginosa strains. The clinical isolate 59.20 is resistant to imipenem (MIC >32 mg/L) and to meropenem (MIC 24 mg/L) and presents high-level expression of PA5542 in comparison with the wild-type strain PAO1. Spectrophotometric analyses showed that PA5542 is a Zn(2+)-dependent imipenemase. Analysis of the PA5542 sequence indicates that it does not belong to the classical categories of ß-lactamases. CONCLUSIONS: PA5542 encodes a new Zn(2+)-dependent imipenemase. The presence of PA5542 in all sequenced P. aeruginosa genomes, maintaining the synteny and without adjacent gene-mobility elements, indicates that it belongs to the P. aeruginosa core genome. High PA5542 expression in 59.20 suggests it may contribute to the resistance to carbapenems of this P. aeruginosa clinical isolate.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/isolamento & purificação , Zinco , Proteínas de Bactérias/metabolismo , Carbapenêmicos/farmacologia , Humanos , Imipenem/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos
15.
Appl Environ Microbiol ; 80(15): 4559-65, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24837376

RESUMO

Quinolones are synthetic antibiotics, and the main cause of resistance to these antimicrobials is mutation of the genes encoding their targets. However, in contrast to the case for other organisms, such mutations have not been found in quinolone-resistant Stenotrophomonas maltophilia isolates, in which overproduction of the SmeDEF efflux pump is a major cause of quinolone resistance. SmeDEF is chromosomally encoded and highly conserved in all studied S. maltophilia strains; it is an ancient element that evolved over millions of years in this species. It thus seems unlikely that its main function would be resistance to quinolones, a family of synthetic antibiotics not present in natural environments until the last few decades. Expression of SmeDEF is tightly controlled by the transcriptional repressor SmeT. Our work shows that plant-produced flavonoids can bind to SmeT, releasing it from smeDEF and smeT operators. Antibiotics extruded by SmeDEF do not impede the binding of SmeT to DNA. The fact that plant-produced flavonoids specifically induce smeDEF expression indicates that they are bona fide effectors regulating expression of this resistance determinant. Expression of efflux pumps is usually downregulated unless their activity is needed. Since smeDEF expression is triggered by plant-produced flavonoids, we reasoned that this efflux pump may have a role in the colonization of plants by S. maltophilia. Our results showed that, indeed, deletion of smeE impairs S. maltophilia colonization of plant roots. Altogether, our results indicate that quinolone resistance is a recent function of SmeDEF and that colonization of plant roots is likely one original function of this efflux pump.


Assuntos
Proteínas de Bactérias/metabolismo , Brassica rapa/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/microbiologia , Quinolonas/farmacologia , Stenotrophomonas maltophilia/crescimento & desenvolvimento , Stenotrophomonas maltophilia/metabolismo , Proteínas de Bactérias/genética , Proteínas de Membrana Transportadoras/genética , Stenotrophomonas maltophilia/efeitos dos fármacos , Stenotrophomonas maltophilia/genética
16.
Nat Commun ; 15(1): 2584, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519499

RESUMO

Mutations in mexZ, encoding a negative regulator of the expression of the mexXY efflux pump genes, are frequently acquired by Pseudomonas aeruginosa at early stages of lung infection. Although traditionally related to resistance to the first-line drug tobramycin, mexZ mutations are associated with low-level aminoglycoside resistance when determined in the laboratory, suggesting that their selection during infection may not be necessarily, or only, related to tobramycin therapy. Here, we show that mexZ-mutated bacteria tend to accumulate inside the epithelial barrier of a human airway infection model, thus colonising the epithelium while being protected against diverse antibiotics. This phenotype is mediated by overexpression of lecA, a quorum sensing-controlled gene, encoding a lectin involved in P. aeruginosa tissue invasiveness. We find that lecA overexpression is caused by a disrupted equilibrium between the overproduced MexXY and another efflux pump, MexAB, which extrudes quorum sensing signals. Our results indicate that mexZ mutations affect the expression of quorum sensing-regulated pathways, thus promoting tissue invasiveness and protecting bacteria from the action of antibiotics within patients, something unnoticeable using standard laboratory tests.


Assuntos
Antibacterianos , Infecções por Pseudomonas , Humanos , Antibacterianos/uso terapêutico , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Tobramicina/farmacologia , Tobramicina/metabolismo , Mutação , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana
17.
Microorganisms ; 11(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985317

RESUMO

Pseudomonas aeruginosa is one of the most prevalent pathogens causing nosocomial infections, mainly in patients presenting with basal pathologies or those who are immunocompromised [...].

18.
Nat Commun ; 14(1): 1723, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997518

RESUMO

Collateral sensitivity (CS) is an evolutionary trade-off traditionally linked to the mutational acquisition of antibiotic resistance (AR). However, AR can be temporally induced, and the possibility that this causes transient, non-inherited CS, has not been addressed. Mutational acquisition of ciprofloxacin resistance leads to robust CS to tobramycin in pre-existing antibiotic-resistant mutants of Pseudomonas aeruginosa. Further, the strength of this phenotype is higher when nfxB mutants, over-producing the efflux pump MexCD-OprJ, are selected. Here, we induce transient nfxB-mediated ciprofloxacin resistance by using the antiseptic dequalinium chloride. Notably, non-inherited induction of AR renders transient tobramycin CS in the analyzed antibiotic-resistant mutants and clinical isolates, including tobramycin-resistant isolates. Further, by combining tobramycin with dequalinium chloride we drive these strains to extinction. Our results support that transient CS could allow the design of new evolutionary strategies to tackle antibiotic-resistant infections, avoiding the acquisition of AR mutations on which inherited CS depends.


Assuntos
Dequalínio , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas de Membrana Transportadoras/genética , Sensibilidade Colateral a Medicamentos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Ciprofloxacina/farmacologia , Tobramicina/farmacologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Testes de Sensibilidade Microbiana
19.
Microbiol Spectr ; 11(1): e0227622, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36533961

RESUMO

Collateral sensitivity (CS) is an evolutionary trade-off by which acquisition of resistance to an antibiotic leads to increased susceptibility to another. This Achilles' heel of antibiotic resistance could be exploited to design evolution-based strategies for treating bacterial infections. To date, most studies in the field have focused on the identification of CS patterns in model strains. However, one of the main requirements for the clinical application of this trade-off is that it must be robust and has to emerge in different genomic backgrounds, including preexisting drug-resistant isolates, since infections are frequently caused by pathogens already resistant to antibiotics. Here, we report the first analysis of CS robustness in clinical strains of Pseudomonas aeruginosa presenting different ab initio mutational resistomes. We identified a robust CS pattern associated with short-term evolution in the presence of ciprofloxacin of clinical P. aeruginosa isolates, including representatives of high-risk epidemic clones belonging to sequence type (ST) 111, ST175, and ST244. We observed the acquisition of different ciprofloxacin resistance mutations in strains presenting varied STs and different preexisting mutational resistomes. Importantly, despite these genetic differences, the use of ciprofloxacin led to a robust CS to aztreonam and tobramycin. In addition, we describe the possible application of this evolutionary trade-off to drive P. aeruginosa infections to extinction by using the combination of ciprofloxacin-tobramycin or ciprofloxacin-aztreonam. Our results support the notion that the identification of robust patterns of CS may establish the basis for developing evolution-informed treatment strategies to tackle bacterial infections, including those due to antibiotic-resistant pathogens. IMPORTANCE Collateral sensitivity (CS) is a trade-off of antibiotic resistance evolution that could be exploited to design strategies for treating bacterial infections. Clinical application of CS requires it to robustly emerge in different genomic backgrounds. In this study, we performed an analysis to identify robust patterns of CS associated with the use of ciprofloxacin in clinical isolates of P. aeruginosa presenting different mutational resistomes and including high-risk epidemic clones (ST111, ST175, and ST244). We demonstrate the robustness of CS to tobramycin and aztreonam and the potential application of this evolutionary observation to drive P. aeruginosa infections to extinction. Our results support the notion that the identification of robust CS patterns may establish the basis for developing evolutionary strategies to tackle bacterial infections, including those due to antibiotic-resistant pathogens.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Aztreonam/uso terapêutico , Infecções por Pseudomonas/microbiologia , Sensibilidade Colateral a Medicamentos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Tobramicina/uso terapêutico , Ciprofloxacina/farmacologia , Genômica , Testes de Sensibilidade Microbiana
20.
Expert Opin Drug Discov ; 18(6): 671-686, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37199662

RESUMO

INTRODUCTION: The resistance-nodulation-division (RND) family is the most important group of multidrug efflux pumps in Gram-negative bacteria. Their inhibition increases the susceptibility of these microorganisms to antibiotics. The study of the effect of efflux pumps' overexpression on bacterial physiology in antibiotic-resistant mutants allows for the identification of exploitable weaknesses associated with resistance acquisition. AREAS COVERED: The authors describe different RND multidrug efflux pumps' inhibition strategies and provide examples of inhibitors. This review also discusses inducers of the expression of efflux pumps, used in human therapy that can produce transient resistance to antibiotics in vivo. Since RND efflux pumps may have a role in bacterial virulence, the use of these systems as targets in the search of antivirulence compounds is also discussed. Finally, this review analyzes how the study of trade-offs associated with resistance acquisition mediated by efflux pumps' overexpression may guide strategies to tackle such resistance. EXPERT OPINION: Increasing the knowledge of the regulation, structure and function of efflux pumps provides information for the rational design of RND efflux pump inhibitors. These inhibitors would increase bacterial susceptibility to several antibiotics and, occasionally, will reduce bacterial virulence. Furthermore, the information on the effect that efflux pumps' overexpression has on bacterial physiology may serve to develop new anti-resistance strategies.


Assuntos
Bactérias Gram-Negativas , Proteínas de Membrana Transportadoras , Humanos , Descoberta de Drogas , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Proteínas de Bactérias/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa