Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 294(49): 18784-18795, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31676685

RESUMO

Post-translational modification by small ubiquitin-like modifier (Sumo) regulates many cellular processes, including the adaptive response to various types of stress, referred to as the Sumo stress response (SSR). However, it remains unclear whether the SSR involves a common set of core proteins regardless of the type of stress or whether each particular type of stress induces a stress-specific SSR that targets a unique, largely nonoverlapping set of Sumo substrates. In this study, we used MS and a Gene Ontology approach to identify differentially sumoylated proteins during heat stress, hyperosmotic stress, oxidative stress, nitrogen starvation, and DNA alkylation in Saccharomyces cerevisiae cells. Our results indicate that each stress triggers a specific SSR signature centered on proteins involved in transcription, translation, and chromatin regulation. Strikingly, whereas the various stress-specific SSRs were largely nonoverlapping, all types of stress tested here resulted in desumoylation of subunits of RNA polymerase III, which correlated with a decrease in tRNA synthesis. We conclude that desumoylation and subsequent inhibition of RNA polymerase III constitutes the core of all stress-specific SSRs in yeast.


Assuntos
RNA Polimerase III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas , Estresse Oxidativo , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa