Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33021918

RESUMO

Leucophyllum frutescens (Scrophulariaceae family), commonly known as Texas sage or cenizo, is an evergreen shrub native to southwestern United States and northern Mexico. This plant is commercially sold as a native, drought-tolerant ornamental. During the spring of 2019 and 2020, typical symptoms of powdery mildew were found on cenizo plants growing as ornamentals in urban areas in the municipality of Ahome, Sinaloa, Mexico. Disease incidence was 95% from a sampled population of 120 plants. Initial symptoms of powdery mildew developed as irregular white colonies on upper leaf surfaces which expanded as infections progressed. In severe infections, leaves became distorted, exhibiting premature defoliation. Microscopic examination showed nipple-shaped appressoria. Conidiophores (n= 30) were hyaline, cylindrical, erect, 89.4 to 134.2 µm long, and forming catenescent conidia. Foot-cells were cylindrical, 35.7 to 65.3 × 10.2 to 13.5 µm, followed by 1-3 shorter cells. Conidia (n= 100) were hyaline, ellipsoid to ovoid, 27.9 to 40.5 × 13.8 to 18.9 µm, containing distinct fibrosin bodies. Germ tubes were simple to forked and laterally produced from the middle of conidia. Chasmothecia were not found during the sampling period on the infected leaves. Based on morphological characteristics, the fungus was identified as Podosphaera xanthii (Braun and Cook 2012). A voucher specimen (accession no. FAVF219) was deposited in the Herbarium of the Faculty of Agronomy of El Fuerte Valley at the Autonomous University of Sinaloa (Juan Jose Rios, Sinaloa, Mexico). To further confirm the identification, total DNA was extracted, and the internal transcribed spacer (ITS) region was amplified by PCR using the primers ITS5/ITS4 (White et al. 1990) and sequenced. The resulting 503 bp sequence (GenBank accession no. MT624793) had 100% coverage and 100% identity to those of P. xanthii (MT568609-MT568611, MT472035, MT309699, MT250855, MT242593). A phylogenetic tree using the maximum parsimony (MP) and maximum likelihood (ML) methods and including published ITS sequences for Podosphaera species was obtained. Phylogenetic analyses revealed that ITS sequence from FAVF219 isolate was grouped into a clade with P. xanthii. Pathogenicity was demonstrated by gently dusting conidia from infected leaves onto 50 leaves of five healthy plants. Five non-inoculated plants served as controls. All plants were covered with polyethylene bags for 48 h to maintain high humidity and were maintained in a greenhouse at temperatures ranging from 20 to 35ºC. All inoculated plants developed similar symptoms to the original observations after 19 days, whereas no symptoms of powdery mildew were observed on control plants. The fungus present on the inoculated plants was morphologically identical to that originally observed on diseased plants, fulfilling Koch's postulates. This fungus has been reported infecting members of the Cucurbitaceae in Mexico (Félix-Gastélum et al. 2017; Farr and Rossman 2020). However, to our knowledge, this is the first report of P. xanthii causing powdery mildew on a member of Scrophulariaceae, specifically L. frutescens in Mexico and worldwide. Further studies for monitoring and control strategies of powdery mildew on Texas sage are required.

2.
Plant Dis ; 91(5): 546-550, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-30780699

RESUMO

Soybean mosaic virus (SMV) is an aphid- and seed-transmitted virus that infects soybean (Glycine max) plants and causes significant yield losses. Seed-borne infections are the primary sources of inoculum for SMV infections. The strain specificity of SMV transmission through seed and SMV-induced seed-coat mottling were investigated in field experiments. Six soybean plant introductions (PIs) were inoculated with eight SMV strains and isolates. Transmission of SMV through seed ranged from 0 to 43%, and isolate-by-soybean line interactions occurred in both transmission rates and percentages of mottled seeds. For example, SMV 746 was transmitted through 43% of seed in PI 229324, but was not transmitted through seed of PIs 68522, 68671, or 86449. In contrast, SMV 413 was transmitted through seed from all PIs. SMVs that were transmitted poorly by the Asian soybean aphid, Aphis glycines, also were transmitted poorly through seed. No predicted amino acid sequences within the helper-component protease or coat protein coding regions differentiated the two groups of SMV strains. The loss of aphid and seed transmissibility by repeated mechanical transmission suggests that constant selection pressure is needed to maintain the regions of the SMV genome controlling the two phenotypes from genetic drift and loss of function.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa