Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Nucleic Acids Res ; 49(15): 8757-8776, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34379789

RESUMO

As compared to eukaryotes, bacteria have a reduced tRNA gene set encoding between 30 and 220 tRNAs. Although in most bacterial phyla tRNA genes are dispersed in the genome, many species from distinct phyla also show genes forming arrays. Here, we show that two types of arrays with distinct evolutionary origins exist. This work focuses on long tRNA gene arrays (L-arrays) that encompass up to 43 genes, which disseminate by horizontal gene transfer and contribute supernumerary tRNA genes to the host. Although in the few cases previously studied these arrays were reported to be poorly transcribed, here we show that the L-array of the model cyanobacterium Anabaena sp. PCC 7120, encoding 23 functional tRNAs, is largely induced upon impairment of the translation machinery. The cellular response to this challenge involves a global reprogramming of the transcriptome in two phases. tRNAs encoded in the array are induced in the second phase of the response, directly contributing to cell survival. Results presented here show that in some bacteria the tRNA gene set may be partitioned between a housekeeping subset, which constantly sustains translation, and an inducible subset that is generally silent but can provide functionality under particular conditions.


Assuntos
Genes Bacterianos , Óperon , Biossíntese de Proteínas , RNA de Transferência/genética , Estresse Fisiológico/genética , Anabaena/genética , Antibacterianos/farmacologia , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Viabilidade Microbiana/genética , RNA de Transferência/metabolismo , Sequências Reguladoras de Ácido Nucleico
2.
Mol Microbiol ; 113(6): 1140-1154, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32039534

RESUMO

Cyanobacteria are unique among the eubacteria as they possess a hybrid Gram phenotype, having an outer membrane but also a comparably thick peptidoglycan sheet. Furthermore, the cyanobacterial divisome includes proteins specific for both the Gram types as well as cyanobacteria-specific proteins. Cells in multicellular cyanobacteria share a continuous periplasm and their cytoplasms are connected by septal junctions that enable communication between cells in the filament. The localization of septal junction proteins depends on interaction with the divisome, however additional yet unknown proteins may be involved in this process. Here, we characterized Alr3364 (termed SepI), a novel septal protein that interacts with the divisome in the multicellular heterocystous cyanobacterium Anabaena sp. strain PCC 7120. SepI localized to the Z-ring and the intercellular septa but did not interact with FtsZ. Instead, SepI interacted with the divisome proteins ZipN, SepF and FtsI and with the septal protein SepJ. The inactivation of sepI led to a defect in cell filament integrity, colony and cell morphology, septum size, nanopore formation and peptidoglycan biogenesis, and inability to differentiate heterocysts. Our results show that SepI plays a role in intercellular communication and furthermore indicate that SepI functions in the coordination of septal junction localization during cell division.


Assuntos
Anabaena/crescimento & desenvolvimento , Proteínas da Membrana Bacteriana Externa/metabolismo , Divisão Celular/fisiologia , Interações Microbianas/fisiologia , Anabaena/genética , Anabaena/metabolismo , Membrana Externa Bacteriana/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/metabolismo , Peptidoglicano/biossíntese
3.
Environ Microbiol ; 23(8): 4823-4837, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34296514

RESUMO

FtsZ is a tubulin-like GTPase that polymerizes to initiate the process of cell division in bacteria. Heterocysts are terminally differentiated cells of filamentous cyanobacteria that have lost the capacity for cell division and in which the ftsZ gene is downregulated. However, mechanisms of FtsZ regulation during heterocyst differentiation have been scarcely investigated. The patD gene is NtcA dependent and involved in the optimization of heterocyst frequency in Anabaena sp. PCC 7120. Here, we report that the inactivation of patD caused the formation of multiple FtsZ-rings in vegetative cells, cell enlargement, and the retention of peptidoglycan synthesis activity in heterocysts, whereas its ectopic expression resulted in aberrant FtsZ polymerization and cell division. PatD interacted with FtsZ, increased FtsZ precipitation in sedimentation assays, and promoted the formation of thick straight FtsZ bundles that differ from the toroidal aggregates formed by FtsZ alone. These results suggest that in the differentiating heterocysts, PatD interferes with the assembly of FtsZ. We propose that in Anabaena FtsZ is a bifunctional protein involved in both vegetative cell division and regulation of heterocyst differentiation. In the differentiating cells PatD-FtsZ interactions appear to set an FtsZ activity that is insufficient for cell division but optimal to foster differentiation.


Assuntos
Anabaena , Cianobactérias , Anabaena/genética , Anabaena/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Divisão Celular/genética , Cianobactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
4.
Mol Microbiol ; 111(4): 883-897, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30636068

RESUMO

Arginine participates widely in metabolic processes. The heterocyst-forming cyanobacterium Anabaena catabolizes arginine to produce proline and glutamate, with concomitant release of ammonium, as major products. Analysis of mutant Anabaena strains showed that this catabolic pathway is the product of two genes, agrE (alr4995) and putA (alr0540). The predicted PutA protein is a conventional, bifunctional proline oxidase that produces glutamate from proline. In contrast, AgrE is a hitherto unrecognized enzyme that contains both an N-terminal α/ß propeller domain and a unique C-terminal domain of previously unidentified function. In vitro analysis of the proteins expressed in Escherichia coli or Anabaena showed arginine dihydrolase activity of the N-terminal domain and ornithine cyclodeaminase activity of the C-terminal domain, overall producing proline from arginine. In the diazotrophic filaments of Anabaena, ß-aspartyl-arginine dipeptide is transferred from the heterocysts to the vegetative cells, where it is cleaved producing aspartate and arginine. Both agrE and putA were found to be expressed at higher levels in vegetative cells than in heterocysts, implying that arginine is catabolized by the AgrE-PutA pathway mainly in the vegetative cells. Expression in Anabaena of a homolog of the C-terminal domain of AgrE obtained from Methanococcus maripaludis enabled us to identify an archaeal ornithine cyclodeaminase.


Assuntos
Amônia-Liases/metabolismo , Anabaena/enzimologia , Arginina/metabolismo , Prolina/metabolismo , Amônia-Liases/genética , Anabaena/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Redes e Vias Metabólicas , Fixação de Nitrogênio , Prolina Oxidase/genética , Prolina Oxidase/metabolismo
5.
Environ Microbiol ; 21(1): 1-17, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30066380

RESUMO

Heterocyst-forming cyanobacteria are filamentous organisms that perform oxygenic photosynthesis and CO2 fixation in vegetative cells and nitrogen fixation in heterocysts, which are formed under deprivation of combined nitrogen. These organisms can acclimate to use different sources of nitrogen and respond to different levels of CO2 . Following work mainly done with the best studied heterocyst-forming cyanobacterium, Anabaena, here we summarize the mechanisms of assimilation of ammonium, nitrate, urea and N2 , the latter involving heterocyst differentiation, and describe aspects of CO2 assimilation that involves a carbon concentration mechanism. These processes are subjected to regulation establishing a hierarchy in the assimilation of nitrogen sources -with preference for the most reduced nitrogen forms- and a dependence on sufficient carbon. This regulation largely takes place at the level of gene expression and is exerted by a variety of transcription factors, including global and pathway-specific transcriptional regulators. NtcA is a CRP-family protein that adjusts global gene expression in response to the C-to-N balance in the cells, and PacR is a LysR-family transcriptional regulator (LTTR) that extensively acclimates the cells to oxygenic phototrophy. A cyanobacterial-specific transcription factor, HetR, is involved in heterocyst differentiation, and other LTTR factors are specifically involved in nitrate and CO2 assimilation.


Assuntos
Anabaena/genética , Carbono/metabolismo , Nitrogênio/metabolismo , Anabaena/crescimento & desenvolvimento , Anabaena/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fixação de Nitrogênio , Oxigênio/metabolismo , Fotossíntese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
PLoS Genet ; 11(4): e1005031, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25830300

RESUMO

Under nitrogen deprivation, filaments of the cyanobacterium Anabaena undergo a process of development, resulting in a one-dimensional pattern of nitrogen-fixing heterocysts separated by about ten photosynthetic vegetative cells. Many aspects of gene expression before nitrogen deprivation and during the developmental process remain to be elucidated. Furthermore, the coupling of gene expression fluctuations between cells along a multicellular filament is unknown. We studied the statistics of fluctuations of gene expression of HetR, a transcription factor essential for heterocyst differentiation, both under steady-state growth in nitrogen-rich conditions and at different times following nitrogen deprivation, using a chromosomally-encoded translational hetR-gfp fusion. Statistical analysis of fluorescence at the individual cell level in wild-type and mutant filaments demonstrates that expression fluctuations of hetR in nearby cells are coupled, with a characteristic spatial range of circa two to three cells, setting the scale for cellular interactions along a filament. Correlations between cells predominantly arise from intercellular molecular transfer and less from cell division. Fluctuations after nitrogen step-down can build up on those under nitrogen-replete conditions. We found that under nitrogen-rich conditions, basal, steady-state expression of the HetR inhibitor PatS, cell-cell communication influenced by the septal protein SepJ and positive HetR auto-regulation are essential determinants of fluctuations in hetR expression and its distribution along filaments. A comparison between the expression of hetR-gfp under nitrogen-rich and nitrogen-poor conditions highlights the differences between the two HetR inhibitors PatS and HetN, as well as the differences in specificity between the septal proteins SepJ and FraC/FraD. Activation, inhibition and cell-cell communication lie at the heart of developmental processes. Our results show that proteins involved in these basic ingredients combine together in the presence of inevitable stochasticity in gene expression, to control the coupled fluctuations of gene expression that give rise to a one-dimensional developmental pattern in this organism.


Assuntos
Anabaena/genética , Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição/metabolismo , Anabaena/crescimento & desenvolvimento , Anabaena/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Periodicidade , Transporte Proteico , Fatores de Transcrição/genética
7.
Mol Microbiol ; 99(4): 808-19, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26552991

RESUMO

Many filamentous cyanobacteria respond to the external cue of nitrogen scarcity by the differentiation of heterocysts, cells specialized in the fixation of atmospheric nitrogen in oxic environments. Heterocysts follow a spatial pattern along the filament of two heterocysts separated by ca. 10-15 vegetative cells performing oxygenic photosynthesis. HetR is a transcriptional regulator that directs heterocyst differentiation. In the model strain Anabaena sp. PCC 7120, the HetR protein was observed in various oligomeric forms in vivo, including a tetramer that peaked with maximal hetR expression during differentiation. Tetramers were not detected in a hetR point mutant incapable of differentiation, but were conspicuous in an over-differentiating strain lacking the PatS inhibitor. In differentiated filaments the HetR tetramer was restricted to heterocysts, being undetectable in vegetative cells. HetR co-purified with RNA polymerase from Anabaena mainly as a tetramer. In vitro, purified recombinant HetR was distributed between monomers, dimers, trimers and tetramers, and it was phosphorylated when incubated with (γ-(32)P)ATP. Phosphorylation and PatS hampered the accumulation of HetR tetramers and impaired HetR binding to DNA. In summary, tetrameric HetR appears to represent a functionally relevant form of HetR, whose abundance in the Anabaena filament could be negatively regulated by phosphorylation and by PatS.


Assuntos
Anabaena/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Anabaena/metabolismo , Proteínas de Bactérias/genética , Nitrogênio/metabolismo , Fosforilação , Mutação Puntual , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/genética
8.
Mol Microbiol ; 101(6): 968-81, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27273832

RESUMO

Filamentous, N2 -fixing, heterocyst-forming cyanobacteria grow as chains of cells that are connected by septal junctions. In the model organism Anabaena sp. strain PCC 7120, the septal protein SepJ is required for filament integrity, normal intercellular molecular exchange, heterocyst differentiation, and diazotrophic growth. An Anabaena strain overexpressing SepJ made wider septa between vegetative cells than the wild type, which correlated with a more spread location of SepJ in the septa as observed with a SepJ-GFP fusion, and contained an increased number of nanopores, the septal peptidoglycan perforations that likely accommodate septal junctions. The septa between heterocysts and vegetative cells, which are narrow in wild-type Anabaena, were notably enlarged in the SepJ-overexpressing mutant. Intercellular molecular exchange tested with fluorescent tracers was increased for the SepJ-overexpressing strain specifically in the case of calcein transfer between vegetative cells and heterocysts. These results support an association between calcein transfer, SepJ-related septal junctions, and septal peptidoglycan nanopores. Under nitrogen deprivation, the SepJ-overexpressing strain produced an increased number of contiguous heterocysts but a decreased percentage of total heterocysts. These effects were lost or altered in patS and hetN mutant backgrounds, supporting a role of SepJ in the intercellular transfer of regulatory signals for heterocyst differentiation.


Assuntos
Anabaena/metabolismo , Proteínas de Bactérias/metabolismo , Anabaena/genética , Proteínas de Bactérias/genética , Difusão , Regulação Bacteriana da Expressão Gênica , Peptidoglicano/metabolismo
9.
Proc Natl Acad Sci U S A ; 111(10): 3823-8, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24550502

RESUMO

Heterocyst-forming cyanobacteria are multicellular organisms in which growth requires the activity of two metabolically interdependent cell types, the vegetative cells that perform oxygenic photosynthesis and the dinitrogen-fixing heterocysts. Vegetative cells provide the heterocysts with reduced carbon, and heterocysts provide the vegetative cells with fixed nitrogen. Heterocysts conspicuously accumulate polar granules made of cyanophycin [multi-L-arginyl-poly (L-aspartic acid)], which is synthesized by cyanophycin synthetase and degraded by the concerted action of cyanophycinase (that releases ß-aspartyl-arginine) and isoaspartyl dipeptidase (that produces aspartate and arginine). Cyanophycin synthetase and cyanophycinase are present at high levels in the heterocysts. Here we created a deletion mutant of gene all3922 encoding isoaspartyl dipeptidase in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. The mutant accumulated cyanophycin and ß-aspartyl-arginine, and was impaired specifically in diazotrophic growth. Analysis of an Anabaena strain bearing an All3922-GFP (green fluorescent protein) fusion and determination of the enzyme activity in specific cell types showed that isoaspartyl dipeptidase is present at significantly lower levels in heterocysts than in vegetative cells. Consistently, isolated heterocysts released substantial amounts of ß-aspartyl-arginine. These observations imply that ß-aspartyl-arginine produced from cyanophycin in the heterocysts is transferred intercellularly to be hydrolyzed, producing aspartate and arginine in the vegetative cells. Our results showing compartmentalized metabolism of cyanophycin identify the nitrogen-rich molecule ß-aspartyl-arginine as a nitrogen vehicle in the unique multicellular system represented by the heterocyst-forming cyanobacteria.


Assuntos
Anabaena/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Fixação de Nitrogênio/fisiologia , Nitrogênio/metabolismo , Anabaena/crescimento & desenvolvimento , Arginina/metabolismo , Ácido Aspártico/metabolismo , Western Blotting , Dipeptidases/genética , Dipeptidases/metabolismo , Dipeptídeos/metabolismo , Microscopia de Fluorescência , Mutagênese , Deleção de Sequência/genética
10.
Mol Microbiol ; 96(3): 566-80, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25644579

RESUMO

Heterocyst-forming cyanobacteria are multicellular organisms that grow as filaments that can be hundreds of cells long. Septal junction complexes, of which SepJ is a possible component, appear to join the cells in the filament. SepJ is a cytoplasmic membrane protein that contains a long predicted periplasmic section and localizes not only to the cell poles in the intercellular septa but also to a position similar to a Z ring when cell division starts suggesting a relation with the divisome. Here, we created a mutant of Anabaena sp. strain PCC 7120 in which the essential divisome gene ftsZ is expressed from a synthetic NtcA-dependent promoter, whose activity depends on the nitrogen source. In the presence of ammonium, low levels of FtsZ were produced, and the subcellular localization of SepJ, which was investigated by immunofluorescence, was impaired. Possible interactions of SepJ with itself and with divisome proteins FtsZ, FtsQ and FtsW were investigated using the bacterial two-hybrid system. We found SepJ self-interaction and a specific interaction with FtsQ, confirmed by co-purification and involving parts of the SepJ and FtsQ periplasmic sections. Therefore, SepJ can form multimers, and in Anabaena, the divisome has a role beyond cell division, localizing a septal protein essential for multicellularity.


Assuntos
Anabaena/química , Proteínas de Bactérias/análise , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/análise , Multimerização Proteica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Ligação Proteica , Mapeamento de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
11.
Environ Microbiol ; 17(9): 3341-51, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25684321

RESUMO

Cyanobacteria perform water-splitting photosynthesis and are important primary producers impacting the carbon and nitrogen cycles at global scale. They fix CO2 through ribulose-bisphosphate carboxylase/oxygenase (RuBisCo) and have evolved a distinct CO2 concentrating mechanism (CCM) that builds high CO2 concentrations in the vicinity of RuBisCo favouring its carboxylase activity. Filamentous cyanobacteria such as Anabaena fix CO2 in photosynthetic vegetative cells, which donate photosynthate to heterocysts that rely on a heterotrophic metabolism to fix N2 . CCM elements are induced in response to inorganic carbon limitation, a cue that exposes the photosynthetic apparatus to photodamage by over-reduction. An Anabaena mutant lacking the LysR-type transcription factor All3953 grew poorly and dies under high light. The rbcL operon encoding RuBisCo was induced upon carbon limitation in the wild type but not in the mutant. ChIP-Seq analysis was used to globally identify All3953 targets under carbon limitation. Targets include, besides rbcL, genes encoding CCM elements, photorespiratory pathway- photosystem- and electron transport-related components, and factors, including flavodiiron proteins, with a demonstrated or putative function in photoprotection. Quantitative reverse transcription polymerase chain reaction analysis of selected All3953 targets showed regulation in the wild type but not in the mutant. All3953 (PacR) is a global regulator of carbon assimilation in an oxygenic photoautotroph.


Assuntos
Anabaena/metabolismo , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Fotossíntese/fisiologia , Ribulose-Bifosfato Carboxilase/metabolismo , Fatores de Transcrição/metabolismo , Anabaena/genética , Proteínas de Bactérias/genética , Sequência de Bases , Ciclo do Carbono/fisiologia , Dióxido de Carbono/metabolismo , Transporte de Elétrons/genética , Luz , Dados de Sequência Molecular , Nitrogênio/metabolismo , Ciclo do Nitrogênio/fisiologia , Óperon/genética , Oxigênio/metabolismo , Regiões Promotoras Genéticas/genética , Ribulose-Bifosfato Carboxilase/genética , Fatores de Transcrição/genética
12.
J Bacteriol ; 196(19): 3452-60, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25049089

RESUMO

In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, heterocysts are formed in the absence of combined nitrogen, following a specific distribution pattern along the filament. The PatS and HetN factors contribute to the heterocyst pattern by inhibiting the formation of consecutive heterocysts. Thus, inactivation of any of these factors produces the multiple contiguous heterocyst (Mch) phenotype. Upon N stepdown, a HetN protein with its C terminus fused to a superfolder version of green fluorescent protein (sf-GFP) or to GFP-mut2 was observed, localized first throughout the whole area of differentiating cells and later specifically on the peripheries and in the polar regions of mature heterocysts, coinciding with the location of the thylakoids. Polar localization required an N-terminal stretch comprising residues 2 to 27 that may represent an unconventional signal peptide. Anabaena strains expressing a version of HetN lacking this fragment from a mutant gene placed at the native hetN locus exhibited a mild Mch phenotype. In agreement with previous results, deletion of an internal ERGSGR sequence, which is identical to the C-terminal sequence of PatS, also led to the Mch phenotype. The subcellular localization in heterocysts of fluorescence resulting from the fusion of GFP to the C terminus of HetN suggests that a full HetN protein is present in these cells. Furthermore, the full HetN protein is more conserved among cyanobacteria than the internal ERGSGR sequence. These observations suggest that HetN anchored to thylakoid membranes in heterocysts may serve a function besides that of generating a regulatory (ERGSGR) peptide.


Assuntos
Anabaena/enzimologia , Anabaena/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Espaço Intracelular/metabolismo , Oxirredutases/metabolismo , Sequência de Aminoácidos , Anabaena/química , Anabaena/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Espaço Intracelular/genética , Dados de Sequência Molecular , Oxirredutases/química , Oxirredutases/genética , Transporte Proteico , Alinhamento de Sequência
13.
BMC Genomics ; 15: 22, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24417914

RESUMO

BACKGROUND: The CRP-family transcription factor NtcA, universally found in cyanobacteria, was initially discovered as a regulator operating N control. It responds to the N regime signaled by the internal 2-oxoglutarate levels, an indicator of the C to N balance of the cells. Canonical NtcA-activated promoters bear an NtcA-consensus binding site (GTAN8TAC) centered at about 41.5 nucleotides upstream from the transcription start point. In strains of the Anabaena/Nostoc genera NtcA is pivotal for the differentiation of heterocysts in response to N stress. RESULTS: In this study, we have used chromatin immunoprecipitation followed by high-throughput sequencing to identify the whole catalog of NtcA-binding sites in cells of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120 three hours after the withdrawal of combined N. NtcA has been found to bind to 2,424 DNA regions in the genome of Anabaena, which have been ascribed to 2,153 genes. Interestingly, only a small proportion of those genes are involved in N assimilation and metabolism, and 65% of the binding regions were located intragenically. CONCLUSIONS: The distribution of NtcA-binding sites identified here reveals the largest bacterial regulon described to date. Our results show that NtcA has a much wider role in the physiology of the cell than it has been previously thought, acting both as a global transcriptional regulator and possibly also as a factor influencing the superstructure of the chromosome (and plasmids).


Assuntos
Anabaena/genética , Proteínas de Bactérias/genética , DNA/metabolismo , Genoma Bacteriano , Fatores de Transcrição/genética , Anabaena/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Imunoprecipitação da Cromatina , Sequenciamento de Nucleotídeos em Larga Escala , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
14.
Mol Microbiol ; 88(6): 1093-105, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23663167

RESUMO

The formation of a diazotrophic cyanobacterial filament represents a simple example of biological development. In Anabaena, a non-random pattern of one nitrogen-fixing heterocyst separated by about 10 photosynthetic vegetative cells results from lateral inhibition elicited by the cells differentiating into heterocysts. Key to this process is the patS gene, which has been shown to produce an inhibitor of heterocyst differentiation that involves the C-terminal RGSGR pentapeptide. Complementation of a ΔpatS Anabaena mutant with different versions of PatS, including point mutations or tag fusions, showed that patS is translated into a 17-amino acid polypeptide. Alterations in the N-terminal part of PatS produced inhibition of heterocyst differentiation, thus this part of the peptide appears necessary for proper processing and self-immunity in the producing cells. Alterations in the C-terminal part of PatS led to over-differentiation, thus supporting its role in inhibition of heterocyst differentiation. A polypeptide, produced in proheterocysts, consisting of a methionine followed by the eight, but not the five, terminal amino acids of PatS recreated the full activity of the native peptide. Immunofluorescence detection showed that an RGSGR-containing peptide accumulated in the cells adjacent to the producing proheterocysts, illustrating intercellular transfer of a morphogen in the cyanobacterial filaments.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Anabaena/metabolismo , Proteínas de Bactérias/metabolismo , Anabaena/genética , Proteínas de Bactérias/genética , Análise Mutacional de DNA , Deleção de Genes , Teste de Complementação Genética , Microscopia de Fluorescência , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Transporte Proteico/genética
15.
mSystems ; 9(1): e0070023, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38079111

RESUMO

Circadian clock arrays in multicellular filaments of the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 display remarkable spatio-temporal coherence under nitrogen-replete conditions. To shed light on the interplay between circadian clocks and the formation of developmental patterns, we followed the expression of a clock-controlled gene under nitrogen deprivation, at the level of individual cells. Our experiments showed that differentiation into heterocysts took place preferentially within a limited interval of the circadian clock cycle, that gene expression in different vegetative intervals along a developed filament was discoordinated, and that the circadian clock was active in individual heterocysts. Furthermore, Anabaena mutants lacking the kaiABC genes encoding the circadian clock core components produced heterocysts but failed in diazotrophy. Therefore, genes related to some aspect of nitrogen fixation, rather than early or mid-heterocyst differentiation genes, are likely affected by the absence of the clock. A bioinformatics analysis supports the notion that RpaA may play a role as master regulator of clock outputs in Anabaena, the temporal control of differentiation by the circadian clock and the involvement of the clock in proper diazotrophic growth. Together, these results suggest that under nitrogen-deficient conditions, the clock coherent unit in Anabaena is reduced from a full filament under nitrogen-rich conditions to the vegetative cell interval between heterocysts.IMPORTANCECircadian clocks, from unicellular organisms to animals, temporally align biological processes to day and night cycles. We study the dynamics of a circadian clock-controlled gene at the individual cell level in the multicellular filamentous cyanobacterium Anabaena, under nitrogen-stress conditions. Under these conditions, some cells along filaments differentiate to carry out atmospheric nitrogen fixation and lose their capability for oxygenic photosynthesis. We found that clock synchronization is limited to organismic units of contiguous photosynthetic cells, contrary to nitrogen-replete conditions in which clocks are synchronized over a whole filament. We provided evidence that the circadian clock regulates the process of differentiation, allowing it to occur preferentially within a limited time window during the circadian clock period. Lastly, we present evidence that the signal from the core clock to clock-regulated genes is conveyed in Anabaena as in unicellular cyanobacteria.


Assuntos
Anabaena , Relógios Circadianos , Cianobactérias , Relógios Circadianos/genética , Anabaena/genética , Cianobactérias/metabolismo , Diferenciação Celular/genética , Nitrogênio/metabolismo
16.
J Bacteriol ; 195(17): 3957-66, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23813733

RESUMO

The filamentous, heterocyst-forming cyanobacteria perform oxygenic photosynthesis in vegetative cells and nitrogen fixation in heterocysts, and their filaments can be hundreds of cells long. In the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, the genes in the fraC-fraD-fraE operon are required for filament integrity mainly under conditions of nitrogen deprivation. The fraC operon transcript partially overlaps gene all2395, which lies in the opposite DNA strand and ends 1 bp beyond fraE. Gene all2395 produces transcripts of 1.35 kb (major transcript) and 2.2 kb (minor transcript) that overlap fraE and whose expression is dependent on the N-control transcription factor NtcA. Insertion of a gene cassette containing transcriptional terminators between fraE and all2395 prevented production of the antisense RNAs and resulted in an increased length of the cyanobacterial filaments. Deletion of all2395 resulted in a larger increase of filament length and in impaired growth, mainly under N2-fixing conditions and specifically on solid medium. We denote all2395 the fraF gene, which encodes a protein restricting filament length. A FraF-green fluorescent protein (GFP) fusion protein accumulated significantly in heterocysts. Similar to some heterocyst differentiation-related proteins such as HglK, HetL, and PatL, FraF is a pentapeptide repeat protein. We conclude that the fraC-fraD-fraE←fraF gene cluster (where the arrow indicates a change in orientation), in which cis antisense RNAs are produced, regulates morphology by encoding proteins that influence positively (FraC, FraD, FraE) or negatively (FraF) the length of the filament mainly under conditions of nitrogen deprivation. This gene cluster is often conserved in heterocyst-forming cyanobacteria.


Assuntos
Anabaena/citologia , Anabaena/genética , Genes Bacterianos , Família Multigênica , Anabaena/crescimento & desenvolvimento , Meios de Cultura/química , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Ordem dos Genes , Mutagênese Insercional , Transcrição Gênica
17.
mBio ; 14(5): e0098323, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37650636

RESUMO

IMPORTANCE: Multicellular organization is a requirement for the development of complex organisms, and filamentous cyanobacteria such as Anabaena represent a paradigmatic case of bacterial multicellularity. The Anabaena filament can include hundreds of communicated cells that exchange nutrients and regulators and, depending on environmental conditions, can include different cell types specialized in distinct biological functions. Hence, the specific features of the Anabaena filament and how they are propagated during cell division represent outstanding biological issues. Here, we studied SepT, a novel coiled-coil-rich protein of Anabaena that is located in the intercellular septa and influences the formation of the septal specialized structures that allow communication between neighboring cells along the filament, a fundamental trait for the performance of Anabaena as a multicellular organism.


Assuntos
Anabaena , Nanoporos , Peptidoglicano/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Anabaena/genética , Anabaena/metabolismo , Citoesqueleto/metabolismo , Regulação Bacteriana da Expressão Gênica
18.
J Bacteriol ; 194(11): 2939-48, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22467790

RESUMO

Heterocyst differentiation is orchestrated by the N control transcriptional regulator NtcA and the differentiation-specific factor HetR. In Anabaena sp. strain PCC 7120, the devBCA operon is expressed from two different promoters activated upon N stepdown. The distal devB promoter (transcription start point [TSP] located at position -704) represents a canonical class II NtcA-activated promoter, including a consensus NtcA-binding site centered 39.5 nucleotides upstream from the TSP. Transcription activation from a second TSP (-454) requires NtcA and is impaired in hetR mutants. In a wild-type background, three different DNA fragments, including both or each individual promoter, directed gfp expression localized mainly to proheterocysts and heterocysts. Expression was undetectable in an ntcA background and, for the fragment including the proximal promoter alone, also in a hetR background. In spite of the absence of consensus NtcA-binding sequences between the two TSPs, NtcA was shown to interact with this DNA region, and NtcA and its effector, 2-oxoglutarate, were necessary and sufficient for in vitro transcription from the -454 TSP. No HetR binding to the DNA or in vitro transcription from the proximal devB TSP promoted by HetR alone were detected. However, a moderate positive effect of HetR on NtcA binding to the DNA between the two devB TSPs was observed. The proximal devB promoter appears to represent a suboptimal NtcA-activated promoter for which HetR may act as a coactivator, with the physiological effect of restricting gene activation to conditions of prevalence of high NtcA and HetR levels, such as those taking place during heterocyst differentiation.


Assuntos
Anabaena/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Transativadores/metabolismo , Ativação Transcricional , Anabaena/genética , Anabaena/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Regulação da Expressão Gênica no Desenvolvimento , Óperon , Ligação Proteica , Transativadores/química , Transativadores/genética
19.
J Bacteriol ; 194(17): 4677-87, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22753066

RESUMO

Some filamentous cyanobacteria such as Anabaena sp. strain PCC 7120 produce cells, termed heterocysts, specialized in nitrogen fixation. Heterocysts bear a thick envelope containing an inner layer of glycolipids and an outer layer of polysaccharide that restrict the diffusion of air (including O(2)) into the heterocyst. Anabaena sp. mutants impaired in production of either of those layers show a Fox(-) phenotype (requiring fixed nitrogen for growth under oxic conditions). We have characterized a set of transposon-induced Fox(-) mutants in which transposon Tn5-1063 was inserted into the Anabaena sp. chromosome open reading frame all1711 which encodes a predicted membrane protein that belongs to the major facilitator superfamily (MFS). These mutants showed higher nitrogenase activities under anoxic than under oxic conditions and altered sucrose uptake. Electron microscopy and alcian blue staining showed a lack of the heterocyst envelope polysaccharide (Hep) layer. Northern blot and primer extension analyses showed that, in a manner dependent on the nitrogen-control transcription factor NtcA, all1711 was strongly induced after nitrogen step-down. Confocal microscopy of an Anabaena sp. strain producing an All1711-green fluorescent protein (All1711-GFP) fusion protein showed induction in all cells of the filament but at higher levels in differentiating heterocysts. All1711-GFP was located in the periphery of the cells, consistent with All1711 being a cytoplasmic membrane protein. Expression of all1711 from the P(glnA) promoter in a multicopy plasmid led to production of a presumptive exopolysaccharide by vegetative cells. These results suggest that All1711, which we denote HepP, is involved in transport of glycoside(s), with a specific physiological role in production of Hep.


Assuntos
Anabaena/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/química , Polissacarídeos Bacterianos/biossíntese , Anabaena/enzimologia , Anabaena/genética , Transporte Biológico , Elementos de DNA Transponíveis , Regulação Bacteriana da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fixação de Nitrogênio , Oxigênio , Polissacarídeos Bacterianos/química , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Mol Microbiol ; 79(4): 1077-88, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21299655

RESUMO

Heterocyst-forming cyanobacteria grow as filaments of cells (trichomes) in which, under nitrogen limitation, two interdependent cell types, the vegetative cells performing oxygenic photosynthesis and the nitrogen-fixing heterocysts, exchange metabolites and regulatory compounds. SepJ is a protein conspicuously located at the cell poles in the intercellular septa of the filaments that has three well-defined domains: an N-terminal coiled-coil domain, a central linker and a C-terminal permease domain. Mutants of Anabaena sp. strain PCC 7120 carrying SepJ proteins with specific deletions showed that, whereas the linker domain is dispensable, the coiled-coil domain is required for polar localization of SepJ, filament integrity, normal intercellular transfer of small fluorescent tracers and diazotrophy. An Anabaena strain carrying the SepJ protein from the filamentous, non-heterocyst-forming cyanobacterium Trichodesmium erythraeum, which lacks the linker domain, made long filaments in the presence of combined nitrogen but fragmented extensively under nitrogen deprivation and did not grow diazotrophically. In contrast, a chimera made of the Trichodesmium coiled-coil domain and the Anabaena permease allowed heterocyst differentiation and diazotrophic growth. Thus, SepJ provides filamentous cyanobacteria with a cell-cell anchoring function, but the permease domain has evolved in heterocyst formers to provide intercellular molecular exchange functions required for diazotrophy.


Assuntos
Anabaena/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Domínios e Motivos de Interação entre Proteínas , Anabaena/genética , Anabaena/metabolismo , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Fixação de Nitrogênio , Fenótipo , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa