Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37097143

RESUMO

An actinobacterium, designated strain SS06011T, was isolated from solar saltern soil collected from Samut Sakhon province, Thailand. The taxonomic position of this strain was established using the polyphasic taxonomic approach. The strain produced grey aerial spore mass on International Streptomyces Project 2 seawater agar that differentiated into spiral spore chains with rugose-surfaced spores. Strain SS06011T was found to have ll-diaminopimelic acid in the cell peptidoglycan. Whole-cell hydrolysates contained galactose, glucose and ribose. MK-9(H6) and MK-9(H4) were major menaquinones. The major cellular fatty acids comprised iso-C16 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. Diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol were detected in cells. These characteristics were coincident with the typical morphological and chemotaxonomic properties of the genus Streptomyces. The taxonomic affiliation at the genus level of this strain could also be confirmed by its 16S rRNA gene sequence data. Strain SS06011T showed the highest 16S rRNA gene sequence similarity to Streptomyces ardesiacus NRRL B-1773T (99.1 %), Streptomyces coelicoflavus NBRC 15399T (99.1 %) and Streptomyces hyderabadensis OU-40T (99.1 %). Digital DNA-DNA hybridization (dDDH), average nucleotide identity-blast (ANIb) and average amino acid identity (AAI) values between strain SS06011T and its closely related type strains, S. ardesiacus NBRC 15402T, S. coelicoflavus NBRC 15399T and S. hyderabadensis JCM 17657T, were in the range of 45.4-48.4 % (for dDDH), 90.8-91.9 % (for ANIb) and 90.8-91.7 % (for AAI), respectively, which are lower than the cut-off criteria for species delineation. The DNA G+C content of genomic DNA was 71.9 mol%. With the differences in physiological, biochemical and genotypic data, strain SS06011T could be discriminated from its closest neighbours. Thus, strain SS06011T should be recognized as representing a novel species of the genus Streptomyces, for which the name Streptomyces salinarius sp. nov. is proposed. The type strain is SS06011T (=TBRC 9951T=NBRC 113998T).


Assuntos
Actinobacteria , Streptomyces , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Actinobacteria/genética , Solo , Análise de Sequência de DNA , DNA Bacteriano/genética , Composição de Bases , Tailândia , Filogenia , Técnicas de Tipagem Bacteriana
2.
Int J Syst Evol Microbiol ; 69(8): 2498-2505, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31204968

RESUMO

A polyphasic approach was used for evaluating the taxonomic status of strain HST21T isolated from Salar de Huasco in the Atacama Desert. The results of 16S rRNA gene and multilocus sequence phylogenetic analyses assigned strain HST21T to the genus Streptomyceswith Streptomyces albidochromogenes DSM 41800Tand Streptomyces flavidovirens DSM 40150T as its nearest neighbours. Digital DNA-DNA hydridization (dDDH) and average nucleotide identity (ANI) values between the genome sequences of strain HST21T and S. albidochromogenes DSM 41800T (35.6 and 88.2 %) and S. flavidovirens DSM 40105T (47.2 and 88.8 %) were below the thresholds of 70  and 95-96 % for prokaryotic conspecific assignation. Phenotypic, chemotaxonomic and genetic results distinguished strain HST21T from its closest neighbours. Strain HST21T is characterized by the presence of ll-diaminopimelic acid in its peptidoglycan layer; glucose and ribose as whole cell sugars; diphosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine, phosphatidylinositol, glycophospholipids, unknown lipids and phospholipids as polar lipids; and anteiso-C15 : 0 (21.6 %) and anteiso-C17 : 0 (20.5 %) as major fatty acids (>15 %). Based on these results, strain HST21T merits recognition as a novel species, for which the name Streptomyces altiplanensis sp. nov. is proposed. The type strain is HST21T=DSM 107267T=CECT 9647T. While analysing the phylogenies of strain HST21T, Streptomyces chryseus DSM 40420T and Streptomyces helvaticus DSM 40431T were found to have 100 % 16S rRNA gene sequence similarity with digital DNA-DNA hydridization (dDDH) and average nucleotide identity (ANI) values of 95.3 and 99.4 %, respectively. Therefore, S. helvaticus is considered as a later heterotypic synonym of S. chryseus and, consequently, we emend the description of S. chryseus.


Assuntos
Clima Desértico , Filogenia , Microbiologia do Solo , Streptomyces/classificação , Álcalis , Altitude , Técnicas de Tipagem Bacteriana , Composição de Bases , Chile , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Concentração de Íons de Hidrogênio , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/isolamento & purificação
3.
PLoS Genet ; 12(12): e1006488, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27977672

RESUMO

The coordination of chromosome segregation with cell growth is fundamental to the proliferation of any organism. In most unicellular bacteria, chromosome segregation is strictly coordinated with cell division and involves ParA that moves the ParB nucleoprotein complexes bi- or unidirectionally toward the cell pole(s). However, the chromosome organization in multiploid, apically extending and branching Streptomyces hyphae challenges the known mechanisms of bacterial chromosome segregation. The complex Streptomyces life cycle involves two stages: vegetative growth and sporulation. In the latter stage, multiple cell divisions accompanied by chromosome compaction and ParAB assisted segregation turn multigenomic hyphal cell into a chain of unigenomic spores. However, the requirement for active chromosome segregation is unclear in the absence of canonical cell division during vegetative growth except in the process of branch formation. The mechanism by which chromosomes are targeted to new hyphae in streptomycete vegetative growth has remained unknown until now. Here, we address the question of whether active chromosome segregation occurs at this stage. Applied for the first time in Streptomyces, labelling of the chromosomal replication initiation region (oriC) and time-lapse microscopy, revealed that in vegetative hyphae every copy of the chromosome is complexed with ParB, whereas ParA, through interaction with the apical protein complex (polarisome), tightly anchors only one chromosome at the hyphal tip. The anchor is maintained during replication, when ParA captures one of the daughter oriCs. During spore germination and branching, ParA targets one of the multiple chromosomal copies to the new hyphal tip, enabling efficient elongation of hyphal tube. Thus, our studies reveal a novel role for ParAB proteins during hyphal tip establishment and extension.


Assuntos
Divisão Celular/genética , Segregação de Cromossomos/genética , DNA Primase/genética , Replicação do DNA/genética , Nucleoproteínas/genética , Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Regulação Bacteriana da Expressão Gênica , Hifas/genética , Hifas/crescimento & desenvolvimento , Nucleoproteínas/metabolismo , Complexo de Reconhecimento de Origem/genética , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento
4.
Nucleic Acids Res ; 41(6): 3659-72, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23393191

RESUMO

The linear chromosome of Streptomyces coelicolor contains two paralogous ssb genes, ssbA and ssbB. Following mutational analysis, we concluded that ssbA is essential, whereas ssbB plays a key role in chromosome segregation during sporulation. In the ssbB mutant, ∼30% of spores lacked DNA. The two ssb genes were expressed differently; in minimal medium, gene expression was prolonged for both genes and significantly upregulated for ssbB. The ssbA gene is transcribed as part of a polycistronic mRNA from two initiation sites, 163 bp and 75 bp upstream of the rpsF translational start codon. The ssbB gene is transcribed as a monocistronic mRNA, from an unusual promoter region, 73 bp upstream of the AUG codon. Distinctive DNA-binding affinities of single-stranded DNA-binding proteins monitored by tryptophan fluorescent quenching and electrophoretic mobility shift were observed. The crystal structure of SsbB at 1.7 Šresolution revealed a common OB-fold, lack of the clamp-like structure conserved in SsbA and previously unpublished S-S bridges between the A/B and C/D subunits. This is the first report of the determination of paralogous single-stranded DNA-binding protein structures from the same organism. Phylogenetic analysis revealed frequent duplication of ssb genes in Actinobacteria, whereas their strong retention suggests that they are involved in important cellular functions.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Segregação de Cromossomos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Streptomyces coelicolor/genética , Actinobacteria/classificação , Actinobacteria/genética , Proteínas de Bactérias/genética , Sequência de Bases , DNA de Cadeia Simples , Proteínas de Ligação a DNA/genética , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Regiões Promotoras Genéticas , Ligação Proteica , Esporos Bacterianos/genética , Streptomyces coelicolor/metabolismo , Streptomyces coelicolor/fisiologia , Relação Estrutura-Atividade , Sítio de Iniciação de Transcrição
5.
Angew Chem Int Ed Engl ; 54(13): 3937-40, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25650563

RESUMO

Antimicrobial resistance and the shortage of novel antibiotics have led to an urgent need for new antibacterial drug leads. Several existing natural product scaffolds (including chelocardins) have not been developed because their suboptimal pharmacological properties could not be addressed at the time. It is demonstrated here that reviving such compounds through the application of biosynthetic engineering can deliver novel drug candidates. Through a rational approach, the carboxamido moiety of tetracyclines (an important structural feature for their bioactivity) was introduced into the chelocardins, which are atypical tetracyclines with an unknown mode of action. A broad-spectrum antibiotic lead was generated with significantly improved activity, including against all Gram-negative pathogens of the ESKAPE panel. Since the lead structure is also amenable to further chemical modification, it is a platform for further development through medicinal chemistry and genetic engineering.


Assuntos
Antibacterianos/síntese química , Tetraciclinas/síntese química , Antibacterianos/farmacologia , Química Farmacêutica , Farmacorresistência Bacteriana , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Conformação Molecular , Engenharia de Proteínas , Relação Estrutura-Atividade , Tetraciclinas/farmacologia
6.
mSystems ; 9(5): e0025024, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38564716

RESUMO

Most biosynthetic gene clusters (BGC) encoding the synthesis of important microbial secondary metabolites, such as antibiotics, are either silent or poorly expressed; therefore, to ensure a strong pipeline of novel antibiotics, there is a need to develop rapid and efficient strain development approaches. This study uses comparative genome analysis to instruct rational strain improvement, using Streptomyces rimosus, the producer of the important antibiotic oxytetracycline (OTC) as a model system. Sequencing of the genomes of two industrial strains M4018 and R6-500, developed independently from a common ancestor, identified large DNA rearrangements located at the chromosome end. We evaluated the effect of these genome deletions on the parental S. rimosus Type Strain (ATCC 10970) genome where introduction of a 145 kb deletion close to the OTC BGC in the Type Strain resulted in massive OTC overproduction, achieving titers that were equivalent to M4018 and R6-500. Transcriptome data supported the hypothesis that the reason for such an increase in OTC biosynthesis was due to enhanced transcription of the OTC BGC and not due to enhanced substrate supply. We also observed changes in the expression of other cryptic BGCs; some metabolites, undetectable in ATCC 10970, were now produced at high titers. This study demonstrated for the first time that the main force behind BGC overexpression is genome rearrangement. This new approach demonstrates great potential to activate cryptic gene clusters of yet unexplored natural products of medical and industrial value.IMPORTANCEThere is a critical need to develop novel antibiotics to combat antimicrobial resistance. Streptomyces species are very rich source of antibiotics, typically encoding 20-60 biosynthetic gene clusters (BGCs). However, under laboratory conditions, most are either silent or poorly expressed so that their products are only detectable at nanogram quantities, which hampers drug development efforts. To address this subject, we used comparative genome analysis of industrial Streptomyces rimosus strains producing high titers of a broad spectrum antibiotic oxytetracycline (OTC), developed during decades of industrial strain improvement. Interestingly, large-scale chromosomal deletions were observed. Based on this information, we carried out targeted genome deletions in the native strain S. rimosus ATCC 10970, and we show that a targeted deletion in the vicinity of the OTC BGC significantly induced expression of the OTC BGC, as well as some other silent BGCs, thus suggesting that this approach may be a useful way to identify new natural products.


Assuntos
Antibacterianos , Genoma Bacteriano , Família Multigênica , Oxitetraciclina , Streptomyces rimosus , Oxitetraciclina/biossíntese , Streptomyces rimosus/genética , Streptomyces rimosus/metabolismo , Antibacterianos/biossíntese , Família Multigênica/genética , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/efeitos dos fármacos
7.
J Bacteriol ; 195(21): 4924-35, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23995638

RESUMO

The genome sequences of eight Streptomyces phages are presented, four of which were isolated for this study. Phages R4, TG1, Hau3, and SV1 were isolated previously and have been exploited as tools for understanding and genetically manipulating Streptomyces spp. We also extracted five apparently intact prophages from recent Streptomyces spp. genome projects and, together with six phage genomes in the database, we analyzed all 19 Streptomyces phage genomes with a view to understanding their relationships to each other and to other actinophages, particularly the mycobacteriophages. Fifteen of the Streptomyces phages group into four clusters of related genomes. Although the R4-like phages do not share nucleotide sequence similarity with other phages, they clearly have common ancestry with cluster A mycobacteriophages, sharing many protein homologues, common gene syntenies, and similar repressor-stoperator regulatory systems. The R4-like phage Hau3 and the prophage StrepC.1 (from Streptomyces sp. strain C) appear to have hijacked a unique adaptation of the streptomycetes, i.e., use of the rare UUA codon, to control translation of the essential phage protein, the terminase. The Streptomyces venezuelae generalized transducing phage SV1 was used to predict the presence of other generalized transducing phages for different Streptomyces species.


Assuntos
Bacteriófagos/genética , Bacteriófagos/fisiologia , Evolução Biológica , Streptomyces/virologia , Adaptação Fisiológica , Sequência de Aminoácidos , Sequência de Bases , Regulação Viral da Expressão Gênica/fisiologia , Genoma Viral , Dados de Sequência Molecular , Prófagos/genética , Prófagos/metabolismo , Especificidade da Espécie , Streptomyces/classificação , Proteínas Virais/genética , Proteínas Virais/metabolismo
8.
Mol Microbiol ; 84(1): 181-97, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22409773

RESUMO

The fluid mosaic model has recently been amended to account for the existence of membrane domains enriched in certain phospholipids. In rod-shaped bacteria, the anionic phospholipid cardiolipin is enriched at the cell poles but its role in the morphogenesis of the filamentous bacterium Streptomyces coelicolor is unknown. It was impossible to delete clsA (cardiolipin synthase; SCO1389) unless complemented by a second copy of clsA elsewhere in the chromosome. When placed under the control of an inducible promoter, clsA expression, phospholipid profile and morphogenesis became inducer dependent. TLC analysis of phospholipid showed altered profiles upon depletion of clsA expression. Analysis of cardiolipin by mass spectrometry showed two distinct cardiolipin envelopes that reflected differences in acyl chain length; the level of the larger cardiolipin envelope was reduced in concert with clsA expression. ClsA-EGFP did not localize to specific locations, but cardiolipin itself showed enrichment at hyphal tips, branch points and anucleate regions. Quantitative analysis of hyphal dimensions showed that the mycelial architecture and the erection of aerial hyphae were affected by the expression of clsA. Overexpression of clsA resulted in weakened hyphal tips, misshaped aerial hyphae and anucleate spores and demonstrates that cardiolipin synthesis is a requirement for morphogenesis in Streptomyces.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Streptomyces coelicolor/enzimologia , Streptomyces coelicolor/crescimento & desenvolvimento , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Proteínas de Bactérias/genética , Cardiolipinas/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Essenciais , Proteínas de Membrana/genética , Mutação , Regiões Promotoras Genéticas , Streptomyces coelicolor/genética , Transferases (Outros Grupos de Fosfato Substituídos)/genética
9.
Microbiology (Reading) ; 159(Pt 12): 2524-2532, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24043447

RESUMO

Tetracyclines (TCs) are medically important antibiotics from the polyketide family of natural products. Chelocardin (CHD), produced by Amycolatopsis sulphurea, is a broad-spectrum tetracyclic antibiotic with potent bacteriolytic activity against a number of Gram-positive and Gram-negative multi-resistant pathogens. CHD has an unknown mode of action that is different from TCs. It has some structural features that define it as 'atypical' and, notably, is active against tetracycline-resistant pathogens. Identification and characterization of the chelocardin biosynthetic gene cluster from A. sulphurea revealed 18 putative open reading frames including a type II polyketide synthase. Compared to typical TCs, the chd cluster contains a number of features that relate to its classification as 'atypical': an additional gene for a putative two-component cyclase/aromatase that may be responsible for the different aromatization pattern, a gene for a putative aminotransferase for C-4 with the opposite stereochemistry to TCs and a gene for a putative C-9 methylase that is a unique feature of this biosynthetic cluster within the TCs. Collectively, these enzymes deliver a molecule with different aromatization of ring C that results in an unusual planar structure of the TC backbone. This is a likely contributor to its different mode of action. In addition CHD biosynthesis is primed with acetate, unlike the TCs, which are primed with malonamate, and offers a biosynthetic engineering platform that represents a unique opportunity for efficient generation of novel tetracyclic backbones using combinatorial biosynthesis.


Assuntos
Actinomycetales/genética , Actinomycetales/metabolismo , Antibacterianos/biossíntese , Vias Biossintéticas/genética , Família Multigênica , Tetraciclinas/biossíntese , DNA Bacteriano/química , DNA Bacteriano/genética , Dados de Sequência Molecular , Fases de Leitura Aberta , Análise de Sequência de DNA
10.
Antonie Van Leeuwenhoek ; 104(3): 431-4, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23828175

RESUMO

Next generation sequencing (NGS) has been widely used to study genomic variation in a variety of prokaryotes. Single nucleotide polymorphisms (SNPs) resulting from genomic comparisons need to be annotated for their functional impact on the coding sequences. We have developed a program, TRAMS, for functional annotation of genomic SNPs which is available to download as a single file executable for WINDOWS users with limited computational experience and as a Python script for Mac OS and Linux users. TRAMS needs a tab delimited text file containing SNP locations, reference nucleotide and SNPs in variant strains along with a reference genome sequence in GenBank or EMBL format. SNPs are annotated as synonymous, nonsynonymous or nonsense. Nonsynonymous SNPs in start and stop codons are separated as non-start and non-stop SNPs, respectively. SNPs in multiple overlapping features are annotated separately for each feature and multiple nucleotide polymorphisms within a codon are combined before annotation. We have also developed a workflow for Galaxy, a highly used tool for analysing NGS data, to map short reads to a reference genome and extract and annotate the SNPs. TRAMS is a simple program for rapid and accurate annotation of SNPs that will be very useful for microbiologists in analysing genomic diversity in microbial populations.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Células Procarióticas , Acesso à Informação
11.
J Bacteriol ; 194(13): 3544-5, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22689234

RESUMO

We report the draft genome sequence of the human pathogen Streptomyces somaliensis (DSM 40738), a pathogen within a genus of largely saprophytic organisms. S. somaliensis causes severe and debilitating deep tissue and bone infections. The genome sequence is deposited in DDBJ/EMBL/GenBank with the accession number AJJM01000000.


Assuntos
Infecções por Actinomycetales/microbiologia , Doenças do Pé/microbiologia , Genoma Bacteriano , Micetoma/microbiologia , Análise de Sequência de DNA , Streptomyces/genética , Humanos , Masculino , Dados de Sequência Molecular , Streptomyces/classificação , Streptomyces/isolamento & purificação , Adulto Jovem
12.
mSystems ; 7(5): e0019922, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36094082

RESUMO

Streptomyces rimosus is an industrial streptomycete, best known as a producer of oxytetracycline, one of the most widely used antibiotics. Despite the significant contribution of Streptomyces species to the pharmaceutical industry, most omics analyses have only been conducted on the model organism Streptomyces coelicolor. In recent years, protein phosphorylation on serine, threonine, and tyrosine (Ser, Thr, and Tyr, respectively) has been shown to play a crucial role in the regulation of numerous cellular processes, including metabolic changes leading to antibiotic production and morphological changes. In this study, we performed a comprehensive quantitative (phospho)proteomic analysis during the growth of S. rimosus under conditions of oxytetracycline production and pellet fragmentation. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis combined with phosphopeptide enrichment detected a total of 3,725 proteins, corresponding to 45.6% of the proteome and 417 phosphorylation sites from 230 phosphoproteins. Significant changes in abundance during three distinct growth phases were determined for 494 proteins and 98 phosphorylation sites. Functional analysis revealed changes in phosphorylation events of proteins involved in important cellular processes, including regulatory mechanisms, primary and secondary metabolism, cell division, and stress response. About 80% of the phosphoproteins detected during submerged growth of S. rimosus have not yet been reported in streptomycetes, and 55 phosphoproteins were not reported in any prokaryote studied so far. This enabled the creation of a unique resource that provides novel insights into the dynamics of (phospho)proteins and reveals many potential regulatory events during antibiotic production in liquid culture of an industrially important bacterium. IMPORTANCE Streptomyces rimosus is best known as a primary source of oxytetracycline (OTC). The significant global market value of OTC highlights the need for a better understanding of the regulatory mechanisms that lead to production of this antibiotic. Our study provides, for the first time, a detailed insight into the dynamics of (phospho)proteomic profiles during growth and antibiotic production in liquid culture of S. rimosus. Significant changes in protein synthesis and phosphorylation have been revealed for a number of important cellular proteins during the growth stages that coincide with OTC production and morphological changes of this industrially important bacterium. Most of these proteins have not been detected in previous studies. Therefore, our results significantly expand the insight into phosphorylation events associated with important cellular processes and antibiotic production; they also greatly increase the phosphoproteome of streptomycetes and contribute with newly discovered phosphoproteins to the database of prokaryotic phosphoproteomes. This can consequently lead to the design of novel research directions in elucidation of the complex regulatory network in Streptomyces.


Assuntos
Oxitetraciclina , Streptomyces rimosus , Streptomyces , Antibacterianos/metabolismo , Streptomyces rimosus/metabolismo , Proteoma/análise , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Fosfoproteínas/análise
13.
J Bacteriol ; 193(5): 1273-5, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21193604

RESUMO

We observed movies of replisome trafficking during Streptomyces coelicolor growth. A replisome(s) in the spore served as a replication center(s) until hyphae reached a certain length, when a tip-proximal replisome formed and moved at a fixed distance behind the tip at a speed equivalent to the extension rate of the tip.


Assuntos
Transporte Proteico/fisiologia , Streptomyces coelicolor/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Parede Celular , Replicação do DNA , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas Recombinantes de Fusão , Streptomyces coelicolor/citologia , Streptomyces coelicolor/genética
14.
Antonie Van Leeuwenhoek ; 99(2): 159-77, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20589427

RESUMO

Based on available genome sequences, Actinomycetales show significant gene synteny across a wide range of species and genera. In addition, many genera show varying degrees of complex morphological development. Using the presence of gene synteny as a basis, it is clear that an analysis of gene conservation across the Streptomyces and various other Actinomycetales will provide information on both the importance of genes and gene clusters and the evolution of morphogenesis in these bacteria. Genome sequencing, although becoming cheaper, is still relatively expensive for comparing large numbers of strains. Thus, a heterologous DNA/DNA microarray hybridization dataset based on a Streptomyces coelicolor microarray allows a cheaper and greater depth of analysis of gene conservation. This study, using both bioinformatical and microarray approaches, was able to classify genes previously identified as involved in morphogenesis in Streptomyces into various subgroups in terms of conservation across species and genera. This will allow the targeting of genes for further study based on their importance at the species level and at higher evolutionary levels.


Assuntos
Actinomycetales/genética , Sequência Conservada , Evolução Molecular , Genes Bacterianos , Hibridização Genômica Comparativa , Sintenia
15.
Microb Genom ; 7(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34779763

RESUMO

Here, we characterize an uncommon set of telomeres from Streptomyces rimosus ATCC 10970, the parental strain of a lineage of one of the earliest-discovered antibiotic producers. Following the closure of its genome sequence, we compared unusual telomeres from this organism with the other five classes of replicon ends found amongst streptomycetes. Closed replicons of streptomycete chromosomes were organized with respect to their phylogeny and physical orientation, which demonstrated that different telomeres were not associated with particular clades and are likely shared amongst different strains by plasmid-driven horizontal gene transfer. Furthermore, we identified a ~50 kb origin island with conserved synteny that is located at the core of all streptomycete chromosomes and forms an axis around which symmetrical chromosome inversions can take place. Despite this chromosomal bilateral symmetry, a bias in parS sites to the right of oriC is maintained across the family Streptomycetaceae and suggests that the formation of ParB/parS nucleoprotein complexes on the right replichore is a conserved feature in streptomycetes. Consequently, our studies reveal novel features of linear bacterial replicons that, through their manipulation, may lead to improvements in growth and productivity of this important industrial group of bacteria.


Assuntos
Cromossomos Bacterianos , Replicon , Bactérias/genética , Cromossomos Bacterianos/genética , Plasmídeos/genética , Replicon/genética
16.
Front Bioeng Biotechnol ; 9: 740722, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712653

RESUMO

Endophytic actinobacteria offer great potential as a source of novel bioactive compounds. In order to investigate the potential for the production of secondary metabolites by endophytes, we recovered a filamentous microorgansism from the tree Antidesma neurocarpum Miq. After phenotypic analysis and whole genome sequencing we demonstrated that this organism, SUK42 was a member of the actinobacterial genus Kitasatospora. This strain has a small genome in comparison with other type strains of this genus and has lost metabolic pathways associated with Stress Response, Nitrogen Metabolism and Secondary Metabolism. Despite this SUK42 can grow well in a laboratory environment and encodes a core genome that is consistent with other members of the genus. Finally, in contrast to other members of Kitasatospora, SUK42 encodes saccharide secondary metabolite biosynthetic gene clusters, one of which with similarity to the acarviostatin cluster, the product of which displays α-amylase inhibitory activity. As extracts of the host plant demonstrate this inhibitory activity, it suggests that the potential medicinal properties of A. neurocarpum Miq might be provided by the endophytic partner and illustrate the potential for exploitation of endophytes for clinical or industrial uses.

17.
Microb Genom ; 7(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34747689

RESUMO

Streptomyces clavuligerus is an industrially important actinomycete whose genetic manipulation is limited by low transformation and conjugation efficiencies, low levels of recombination of introduced DNA, and difficulty in obtaining consistent sporulation. We describe the construction and application of versatile vectors for Cas9-mediated genome editing of this strain. To design spacer sequences with confidence, we derived a highly accurate genome assembly for an isolate of the type strain (ATCC 27064). This yielded a chromosome assembly (6.75 Mb) plus assemblies for pSCL4 (1795 kb) and pSCL2 (149 kb). The strain also carries pSCL1 (12 kb), but its small size resulted in only partial sequence coverage. The previously described pSCL3 (444 kb) is not present in this isolate. Using our Cas9 vectors, we cured pSCL4 with high efficiency by targeting the plasmid's parB gene. Five of the resulting pSCL4-cured isolates were characterized and all showed impaired sporulation. Shotgun genome sequencing of each of these derivatives revealed large deletions at the ends of the chromosomes in all of them, and for two clones sufficient sequence data was obtained to show that the chromosome had circularized. Taken together, these data indicate that pSCL4 is essential for the structural stability of the linear chromosome.


Assuntos
Edição de Genes , Streptomyces , Cromossomos , Edição de Genes/métodos , Plasmídeos/genética , Streptomyces/genética
18.
Access Microbiol ; 2(6): acmi000122, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32974587

RESUMO

BACKGROUND: Streptomycete bacteria are prolific producers of specialized metabolites, many of which have clinically relevant bioactivity. A striking feature of their genomes is the expansion of gene families that encode the same enzymatic function. Genes that undergo expansion events, either by horizontal gene transfer or duplication, can have a range of fates: genes can be lost, or they can undergo neo-functionalization or sub-functionalization. To test whether expanded gene families in Streptomyces exhibit differential expression, an RNA-Seq approach was used to examine cultures of wild-type Streptomyces coelicolor grown with either glucose or tween as the sole carbon source. RESULTS: RNA-Seq analysis showed that two-thirds of genes within expanded gene families show transcriptional differences when strains were grown on tween compared to glucose. In addition, expression of specialized metabolite gene clusters (actinorhodin, isorenieratane, coelichelin and a cryptic NRPS) was also influenced by carbon source. CONCLUSIONS: Expression of genes encoding the same enzymatic function had transcriptional differences when grown on different carbon sources. This transcriptional divergence enables partitioning to function under different physiological conditions. These approaches can inform metabolic engineering of industrial Streptomyces strains and may help develop cultivation conditions to activate the so-called silent biosynthetic gene clusters.

19.
Appl Environ Microbiol ; 74(21): 6774-81, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18791015

RESUMO

Bacteria from the genus Streptomyces are among the most complex of all prokaryotes; not only do they grow as a complex mycelium, they also differentiate to form aerial hyphae before developing further to form spore chains. This developmental heterogeneity of streptomycete microcolonies makes studying the dynamic processes that contribute to growth and development a challenging procedure. As a result, in order to study the mechanisms that underpin streptomycete growth, we have developed a system for studying hyphal extension, protein trafficking, and sporulation by time-lapse microscopy. Through the use of time-lapse microscopy we have demonstrated that Streptomyces coelicolor germ tubes undergo a temporary arrest in their growth when in close proximity to sibling extension sites. Following germination, in this system, hyphae extended at a rate of approximately 20 microm h(-1), which was not significantly different from the rate at which the apical ring of the cytokinetic protein FtsZ progressed along extending hyphae through a spiraling movement. Although we were able to generate movies for streptomycete sporulation, we were unable to do so for either the erection of aerial hyphae or the early stages of sporulation. Despite this, it was possible to demonstrate an arrest of aerial hyphal development that we suggest is through the depolymerization of FtsZ-enhanced green fluorescent protein (GFP). Consequently, the imaging system reported here provides a system that allows the dynamic movement of GFP-tagged proteins involved in growth and development of S. coelicolor to be tracked and their role in cytokinesis to be characterized during the streptomycete life cycle.


Assuntos
Microscopia de Vídeo/métodos , Streptomyces coelicolor/citologia , Streptomyces coelicolor/metabolismo , Fusão Gênica Artificial , Genes Reporter , Proteínas de Fluorescência Verde , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
20.
Talanta ; 185: 275-280, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29759200

RESUMO

Cotton swab is the conventional swabbing tool that is usually applied for collecting pathogens from contaminated surfaces, followed by cells lysis and DNA extraction before subjecting to genetic analysis. However, such an approach is time consuming as it involves several steps and requires highly trained personnel to perform the experiment. In this study, we developed a new cotton swab-based detection system that involved integrating bacterial collection, preconcentration and detection on Q-tips. The platform is based on a sandwich assay that can detect different pathogens visually by color changes. Lactoferrin-immobilized cotton is used as a general capturing tool to collect various pathogens from surfaces. The presence of particular bacteria is then detected by immersing the cotton in antibodies attached to different colored nanobeads. The target cell is captured between the lactoferrin and specific antibody-conjugated beads which results in certain color development. The effectiveness of this simply fabricated sensor was demonstrated using Salmonella typhimurium, Salmonella enteritidis, Staphylococcus aureus and Campylobacter jejuni. The intensity of the color on the cotton surfaces increased with increasing the concentration of the pathogenic bacteria. The detection limit was as low as 10 cfu/ml for Salmonella typhimurium and Campylobacter jejuni, 100 cfu/ml for Salmonella enteritidis and 100 cfu/ml for Staphylococcus aureus on chicken meat surface. Moreover, this method showed high selectivity and was further confirmed by loop-mediated isothermal amplification (LAMP). The simplicity and the low cost of this colorimetric sensor renders it applicable to a wide range of other pathogens on different surfaces.


Assuntos
Técnicas Biossensoriais , Colorimetria , Fibra de Algodão , Imunoensaio , Lactoferrina/química , Campylobacter jejuni/isolamento & purificação , Salmonella enteritidis/isolamento & purificação , Salmonella typhimurium/isolamento & purificação , Staphylococcus aureus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa