Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mov Disord ; 33(7): 1119-1129, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29603387

RESUMO

BACKGROUND: Spinocerebellar ataxia type 14 is a rare form of autosomal dominant cerebellar ataxia caused by mutations in protein kinase Cγ gene. Clinically, it presents with a slowly progressive, mainly pure cerebellar ataxia. METHODS: Using next generation sequencing, we screened 194 families with autosomal dominant cerebellar ataxia and normal polyglutamine repeats. In-depth phenotyping was performed using validated clinical rating scales neuroimaging and electrophysiological investigations. RESULTS: We identified 25 individuals from 13 families carrying pathogenic mutations in protein kinase Cγ gene. A total of 10 unique protein kinase Cγ gene mutations have been confirmed of which 5 are novel and 5 were previously described. Our data suggest that the age at onset is highly variable; disease course is slowly progressive and rarely associated with severe disability. However, one third of patients presented with a complex ataxia comprising severe focal and/or task-induced dystonia, peripheral neuropathy, parkinsonism, myoclonus, and pyramidal syndrome. The most complex phenotype is related to a missense mutation in the catalytic domain in exon 11. CONCLUSION: We present one of the largest genetically confirmed spinocerebellar ataxia type 14 cohorts contributing novel variants and clinical characterisation. We show that although protein kinase Cγ gene mutations present mainly as slowly progressive pure ataxia, more than a third of cases had a complex phenotype. Overall, our case series extends the phenotype and suggests that protein kinase Cγ gene mutations should be considered in patients with slowly progressive autosomal dominant cerebellar ataxia, particularly when myoclonus, dystonia, or mild cognitive impairment are present in the absence of polyglutamine expansion. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distonia/etiologia , Mutação de Sentido Incorreto/genética , Peptídeos/genética , Proteína Quinase C/genética , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/genética , Adulto , Idade de Início , Idoso , Pré-Escolar , Estudos de Coortes , Cisteína/genética , Progressão da Doença , Saúde da Família , Feminino , Estudos de Associação Genética , Testes Genéticos , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fenótipo , Ataxias Espinocerebelares/diagnóstico por imagem , Adulto Jovem
2.
Am J Hum Genet ; 95(5): 611-21, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25439728

RESUMO

Intellectual disability and cerebellar atrophy occur together in a large number of genetic conditions and are frequently associated with microcephaly and/or epilepsy. Here we report the identification of causal mutations in Sorting Nexin 14 (SNX14) found in seven affected individuals from three unrelated consanguineous families who presented with recessively inherited moderate-severe intellectual disability, cerebellar ataxia, early-onset cerebellar atrophy, sensorineural hearing loss, and the distinctive association of progressively coarsening facial features, relative macrocephaly, and the absence of seizures. We used homozygosity mapping and whole-exome sequencing to identify a homozygous nonsense mutation and an in-frame multiexon deletion in two families. A homozygous splice site mutation was identified by Sanger sequencing of SNX14 in a third family, selected purely by phenotypic similarity. This discovery confirms that these characteristic features represent a distinct and recognizable syndrome. SNX14 encodes a cellular protein containing Phox (PX) and regulator of G protein signaling (RGS) domains. Weighted gene coexpression network analysis predicts that SNX14 is highly coexpressed with genes involved in cellular protein metabolism and vesicle-mediated transport. All three mutations either directly affected the PX domain or diminished SNX14 levels, implicating a loss of normal cellular function. This manifested as increased cytoplasmic vacuolation as observed in cultured fibroblasts. Our findings indicate an essential role for SNX14 in neural development and function, particularly in development and maturation of the cerebellum.


Assuntos
Ataxia Cerebelar/genética , Deficiência Intelectual/genética , Nexinas de Classificação/genética , Sequência de Bases , Ataxia Cerebelar/patologia , Mapeamento Cromossômico , Códon sem Sentido/genética , Feminino , Fibroblastos/ultraestrutura , Redes Reguladoras de Genes/genética , Genes Recessivos/genética , Humanos , Deficiência Intelectual/patologia , Masculino , Microscopia Eletrônica , Dados de Sequência Molecular , Linhagem , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
3.
Cerebellum ; 16(1): 262-267, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26995604

RESUMO

Autosomal-recessive cerebellar ataxias (ARCA) are clinically and genetically heterogeneous conditions primarily affecting the cerebellum. Mutations in the PNPLA6 gene have been identified as the cause of hereditary spastic paraplegia and complex forms of ataxia associated with retinal and endocrine manifestations in a field where the genotype-phenotype correlations are rapidly expanding. We identified two cousins from a consanguineous family belonging to a large Zoroastrian (Parsi) family residing in Mumbai, India, who presented with pure cerebellar ataxia without chorioretinal dystrophy or hypogonadotropic hypogonadism. We used a combined approach of clinical characterisation, homozygosity mapping, whole-exome and Sanger sequencing to identify the genetic defect in this family. The phenotype in the family was pure cerebellar ataxia. Homozygosity mapping revealed one large region of shared homozygosity at chromosome 19p13 between affected individuals. Within this region, whole-exome sequencing of the index case identified two novel homozygous missense variants in the PNPLA6 gene at c.3847G>A (p.V1283M) and c.3929A>T (p.D1310V) in exon 32. Both segregated perfectly with the disease in this large family, with only the two affected cousins being homozygous. We identified for the first time PNPLA6 mutations associated with pure cerebellar ataxia in a large autosomal-recessive Parsi kindred. Previous mutations in this gene have been associated with a more complex phenotype but the results here suggest an extension of the associated disease spectrum.


Assuntos
Ataxia Cerebelar/genética , Mutação , Fosfolipases/genética , Idoso , Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/fisiopatologia , Consanguinidade , Família , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Homologia de Sequência de Aminoácidos
4.
J Med Genet ; 52(2): 85-94, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25480986

RESUMO

BACKGROUND: Oliver-McFarlane syndrome is characterised by trichomegaly, congenital hypopituitarism and retinal degeneration with choroidal atrophy. Laurence-Moon syndrome presents similarly, though with progressive spinocerebellar ataxia and spastic paraplegia and without trichomegaly. Both recessively inherited disorders have no known genetic cause. METHODS: Whole-exome sequencing was performed to identify the genetic causes of these disorders. Mutations were functionally validated in zebrafish pnpla6 morphants. Embryonic expression was evaluated via in situ hybridisation in human embryonic sections. Human neurohistopathology was performed to characterise cerebellar degeneration. Enzymatic activities were measured in patient-derived fibroblast cell lines. RESULTS: Eight mutations in six families with Oliver-McFarlane or Laurence-Moon syndrome were identified in the PNPLA6 gene, which encodes neuropathy target esterase (NTE). PNPLA6 expression was found in the developing human eye, pituitary and brain. In zebrafish, the pnpla6 curly-tailed morphant phenotype was fully rescued by wild-type human PNPLA6 mRNA and not by mutation-harbouring mRNAs. NTE enzymatic activity was significantly reduced in fibroblast cells derived from individuals with Oliver-McFarlane syndrome. Intriguingly, adult brain histology from a patient with highly overlapping features of Oliver-McFarlane and Laurence-Moon syndromes revealed extensive cerebellar degeneration and atrophy. CONCLUSIONS: Previously, PNPLA6 mutations have been associated with spastic paraplegia type 39, Gordon-Holmes syndrome and Boucher-Neuhäuser syndromes. Discovery of these additional PNPLA6-opathies further elucidates a spectrum of neurodevelopmental and neurodegenerative disorders associated with NTE impairment and suggests a unifying mechanism with diagnostic and prognostic importance.


Assuntos
Blefaroptose/enzimologia , Blefaroptose/genética , Hidrolases de Éster Carboxílico/genética , Nanismo/enzimologia , Nanismo/genética , Predisposição Genética para Doença , Hipertricose/enzimologia , Hipertricose/genética , Deficiência Intelectual/enzimologia , Deficiência Intelectual/genética , Síndrome de Laurence-Moon/enzimologia , Síndrome de Laurence-Moon/genética , Retinose Pigmentar/enzimologia , Retinose Pigmentar/genética , Alelos , Sequência de Aminoácidos , Animais , Hidrolases de Éster Carboxílico/química , Sistema Nervoso Central/patologia , Deficiências do Desenvolvimento/enzimologia , Deficiências do Desenvolvimento/genética , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Fosfolipases/química , Fosfolipases/genética , Estrutura Terciária de Proteína , Retina/patologia , Peixe-Zebra/embriologia
5.
Mov Disord ; 30(6): 828-33, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25545912

RESUMO

Recently, mutations in the TUBB4A gene have been found to underlie hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC) syndrome, a rare neurodegenerative disorder of infancy and childhood. TUBB4A mutations also have been described as causative of DYT4 ("hereditary whispering dysphonia"). However, in DYT4, brain imaging has been reported to be normal and, therefore, H-ABC syndrome and DYT4 have been construed to be different disorders, despite some phenotypic overlap. Hence, the question of whether these disorders reflect variable expressivity or pleiotropy of TUBB4A mutations has been raised. We report four unrelated patients with imaging findings either partially or totally consistent with H-ABC syndrome, who were found to have TUBB4A mutations. All four subjects had a relatively homogenous phenotype characterized by severe generalized dystonia with superimposed pyramidal and cerebellar signs, and also bulbar involvement leading to complete aphonia and swallowing difficulties, even though one of the cases had an intermediate phenotype between H-ABC syndrome and DYT4. Genetic analysis of the TUBB4A gene showed one previously described and two novel mutations (c.941C>T; p.Ala314Val and c.900G>T; p.Met300Ile) in the exon 4 of the gene. While expanding the genetic spectrum of H-ABC syndrome, we confirm its radiological heterogeneity and demonstrate that phenotypic overlap with DYT4. Moreover, reappraisal of previously reported cases would also argue against pleiotropy of TUBB4A mutations. We therefore suggest that H-ABC and DYT4 belong to a continuous phenotypic spectrum associated with TUBB4A mutations.


Assuntos
Gânglios da Base/patologia , Cerebelo/patologia , Distonia Muscular Deformante/genética , Pleiotropia Genética , Leucoencefalopatias/genética , Tubulina (Proteína)/genética , Distúrbios da Voz/congênito , Adulto , Distonia Muscular Deformante/patologia , Distonia Muscular Deformante/fisiopatologia , Éxons , Feminino , Heterozigoto , Humanos , Leucoencefalopatias/patologia , Leucoencefalopatias/fisiopatologia , Masculino , Mutação , Fenótipo , Distúrbios da Voz/genética , Distúrbios da Voz/patologia , Distúrbios da Voz/fisiopatologia
6.
Brain ; 137(Pt 9): 2480-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24993959

RESUMO

GTP cyclohydrolase 1, encoded by the GCH1 gene, is an essential enzyme for dopamine production in nigrostriatal cells. Loss-of-function mutations in GCH1 result in severe reduction of dopamine synthesis in nigrostriatal cells and are the most common cause of DOPA-responsive dystonia, a rare disease that classically presents in childhood with generalized dystonia and a dramatic long-lasting response to levodopa. We describe clinical, genetic and nigrostriatal dopaminergic imaging ([(123)I]N-ω-fluoropropyl-2ß-carbomethoxy-3ß-(4-iodophenyl) tropane single photon computed tomography) findings of four unrelated pedigrees with DOPA-responsive dystonia in which pathogenic GCH1 variants were identified in family members with adult-onset parkinsonism. Dopamine transporter imaging was abnormal in all parkinsonian patients, indicating Parkinson's disease-like nigrostriatal dopaminergic denervation. We subsequently explored the possibility that pathogenic GCH1 variants could contribute to the risk of developing Parkinson's disease, even in the absence of a family history for DOPA-responsive dystonia. The frequency of GCH1 variants was evaluated in whole-exome sequencing data of 1318 cases with Parkinson's disease and 5935 control subjects. Combining cases and controls, we identified a total of 11 different heterozygous GCH1 variants, all at low frequency. This list includes four pathogenic variants previously associated with DOPA-responsive dystonia (Q110X, V204I, K224R and M230I) and seven of undetermined clinical relevance (Q110E, T112A, A120S, D134G, I154V, R198Q and G217V). The frequency of GCH1 variants was significantly higher (Fisher's exact test P-value 0.0001) in cases (10/1318 = 0.75%) than in controls (6/5935 = 0.1%; odds ratio 7.5; 95% confidence interval 2.4-25.3). Our results show that rare GCH1 variants are associated with an increased risk for Parkinson's disease. These findings expand the clinical and biological relevance of GTP cycloydrolase 1 deficiency, suggesting that it not only leads to biochemical striatal dopamine depletion and DOPA-responsive dystonia, but also predisposes to nigrostriatal cell loss. Further insight into GCH1-associated pathogenetic mechanisms will shed light on the role of dopamine metabolism in nigral degeneration and Parkinson's disease.


Assuntos
GTP Cicloidrolase/genética , Heterozigoto , Mutação/genética , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Bases de Dados Genéticas , Europa (Continente)/epidemiologia , Feminino , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/epidemiologia , Linhagem , Risco , Estados Unidos/epidemiologia , Adulto Jovem
7.
Nat Genet ; 38(5): 515-7, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16604074

RESUMO

Here we show that in substantia nigra neurons from both aged controls and individuals with Parkinson disease, there is a high level of deleted mitochondrial DNA (mtDNA) (controls, 43.3% +/- 9.3%; individuals with Parkinson disease, 52.3% +/- 9.3%). These mtDNA mutations are somatic, with different clonally expanded deletions in individual cells, and high levels of these mutations are associated with respiratory chain deficiency. Our studies suggest that somatic mtDNA deletions are important in the selective neuronal loss observed in brain aging and in Parkinson disease.


Assuntos
Envelhecimento/genética , DNA Mitocondrial/genética , Doença de Parkinson/genética , Deleção de Sequência , Substância Negra/patologia , Sequência de Bases , Humanos
8.
Ann Neurol ; 73(4): 546-53, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23424103

RESUMO

Dystonia type 4 (DYT4) was first described in a large family from Heacham in Norfolk with an autosomal dominantly inherited whispering dysphonia, generalized dystonia, and a characteristic hobby horse ataxic gait. We carried out a genetic linkage analysis in the extended DYT4 family that spanned 7 generations from England and Australia, revealing a single LOD score peak of 6.33 on chromosome 19p13.12-13. Exome sequencing in 2 cousins identified a single cosegregating mutation (p.R2G) in the ß-tubulin 4a (TUBB4a) gene that was absent in a large number of controls. The mutation is highly conserved in the ß-tubulin autoregulatory MREI (methionine-arginine-glutamic acid-isoleucine) domain, highly expressed in the central nervous system, and extensive in vitro work has previously demonstrated that substitutions at residue 2, specifically R2G, disrupt the autoregulatory capability of the wild-type ß-tubulin peptide, affirming the role of the cytoskeleton in dystonia pathogenesis.


Assuntos
Distúrbios Distônicos/genética , Predisposição Genética para Doença/genética , Mutação/genética , Tubulina (Proteína)/genética , Adulto , Animais , Austrália , Encéfalo/patologia , Distúrbios Distônicos/patologia , Inglaterra , Exoma , Feminino , Ligação Genética , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único/genética
9.
J Neurol Neurosurg Psychiatry ; 85(5): 493-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24218524

RESUMO

BACKGROUND: The autosomal-recessive cerebellar ataxias (ARCA) are a clinically and genetically heterogeneous group of neurodegenerative disorders. The large number of ARCA genes leads to delay and difficulties obtaining an exact diagnosis in many patients and families. Ubiquinone (CoQ10) deficiency is one of the potentially treatable causes of ARCAs as some patients respond to CoQ10 supplementation. The AarF domain containing kinase 3 gene (ADCK3) is one of several genes associated with CoQ10 deficiency. ADCK3 encodes a mitochondrial protein which functions as an electron-transfer membrane protein complex in the mitochondrial respiratory chain (MRC). METHODS: We report two siblings from a consanguineous Pakistani family who presented with cerebellar ataxia and severe myoclonus from adolescence. Whole exome sequencing and biochemical assessment of fibroblasts were performed in the index patient. RESULTS: A novel homozygous frameshift mutation in ADCK3 (p.Ser616Leufs*114), was identified in both siblings. This frameshift mutation results in the loss of the stop codon, extending the coding protein by 81 amino acids. Significant CoQ10 deficiency and reduced MRC enzyme activities in the index patient's fibroblasts suggested that the mutant protein may reduce the efficiency of mitochondrial electron transfer. CoQ10 supplementation was initiated following these genetic and biochemical analyses. She gained substantial improvement in myoclonic movements, ataxic gait and dysarthric speech after treatment. CONCLUSION: This study highlights the importance of diagnosing ADCK3 mutations and the potential benefit of treatment for patients. The identification of this new mutation broadens the phenotypic spectrum associated with ADCK3 mutations and provides further understanding of their pathogenic mechanism.


Assuntos
Ataxia Cerebelar/genética , Mutação da Fase de Leitura/genética , Proteínas Quinases/genética , Adulto , Ataxia Cerebelar/metabolismo , Ataxia Cerebelar/terapia , Consanguinidade , Feminino , Humanos , Proteínas Mitocondriais/genética , Linhagem , Ubiquinona/análogos & derivados , Ubiquinona/deficiência
10.
Hum Mutat ; 33(9): 1324-32, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22689585

RESUMO

The inherited cerebellar ataxias are a diverse group of clinically and genetically heterogeneous neurodegenerative disorders. Inheritance patterns of these disorders can be complex with autosomal dominant, autosomal recessive, X-linked, and mitochondrial inheritance demonstrated by one or more ataxic syndromes. The broad range of mutation types found in inherited ataxia contributes to the complex genetic etiology of these disorders. The majority of inherited ataxias are caused by repeat expansions; however, conventional mutations are important causes of the rarer dominant and recessive ataxias. Advances in sequencing technology have allowed for much broader testing of these rare ataxia genes. This is relevant to the aims of the Human Variome Project, which aims to collate and store gene variation data through mutation databases. Variant data is currently located in a range of public and commercial resources. Few locus-specific databases have been created to catalogue variation in the dominant ataxia genes although there are several databases for some recessive genes. Developing these resources will facilitate a better understanding of the complex genotype-phenotype relationships in these disorders and assist interpretation of gene variants as testing for rarer ataxia genes becomes commonplace.


Assuntos
Bases de Dados Genéticas , Heterogeneidade Genética , Mutação , Degenerações Espinocerebelares/diagnóstico , Degenerações Espinocerebelares/genética , Genes Recessivos , Estudos de Associação Genética , Loci Gênicos , Pesquisa em Genética , Genoma Humano , Humanos , Repetições de Microssatélites
12.
PeerJ ; 7: e7983, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31772832

RESUMO

BACKGROUND: Charcot-Marie-Tooth (CMT) disease is the most common neuromuscular disorder in humans affecting 40 out of 100,000 individuals. In 2008, we described the clinical, electrophysiological and pathological findings of a demyelinating motor and sensory neuropathy in Miniature Schnauzer dogs, with a suspected autosomal recessive mode of inheritance based on pedigree analysis. The discovery of additional cases has followed this work and led to a genome-wide association mapping approach to search for the underlying genetic cause of the disease. METHODS: For genome wide association screening, genomic DNA samples from affected and unaffected dogs were genotyped using the Illumina CanineHD SNP genotyping array. SBF2 and its variant were sequenced using primers and PCRs. RNA was extracted from muscle of an unaffected and an affected dog and RT-PCR performed. Immunohistochemistry for myelin basic protein was performed on peripheral nerve section specimens. RESULTS: The genome-wide association study gave an indicative signal on canine chromosome 21. Although the signal was not of genome-wide significance due to the small number of cases, the SBF2 (also known as MTMR13) gene within the region of shared case homozygosity was a strong positional candidate, as 22 genetic variants in the gene have been associated with demyelinating forms of Charcot-Marie-Tooth disease in humans. Sequencing of SBF2 in cases revealed a splice donor site genetic variant, resulting in cryptic splicing and predicted early termination of the protein based on RNA sequencing results. CONCLUSIONS: This study reports the first genetic variant in Miniature Schnauzer dogs responsible for the occurrence of a demyelinating peripheral neuropathy with abnormally folded myelin. This discovery establishes a genotype/phenotype correlation in affected Miniature Schnauzers that can be used for the diagnosis of these dogs. It further supports the dog as a natural model of a human disease; in this instance, Charcot-Marie-Tooth disease. It opens avenues to search the biological mechanisms responsible for the disease and to test new therapies in a non-rodent large animal model. In particular, recent gene editing methods that led to the restoration of dystrophin expression in a canine model of muscular dystrophy could be applied to other canine models such as this before translation to humans.

13.
J Neurol ; 263(8): 1503-10, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27178001

RESUMO

The autosomal recessive spinocerebellar ataxias are an exciting field of study, with a growing number of causal genes and an expanding phenotypic spectrum. SYNE1 was originally discovered in 2007 as the causal gene underlying autosomal recessive spinocerebellar ataxia 1, a disease clinically thought to manifest with mainly pure cerebellar ataxia. Since the original report SYNE1 mutations have also been identified in families with motor neuronopathy and arthrogryposis but few families have been screened as the gene is very large at 146 exons in length. We screened 196 recessive and sporadic ataxia patients for mutations in SYNE1 using next generation sequencing in order to assess its frequency and extend the clinicogenetic spectrum. We identified four novel truncating mutations spread throughout the SYNE1 gene from three families living in London that originated from England, Turkey and Sri Lanka. The phenotype was mainly pure cerebellar ataxia in two families, cognitive decline was present in all three families, axonal neuropathy in one family and marked spasticity in the Turkish family, with a range of disease severities. Searching for genotype-phenotype correlations in the SYNE1 gene, defects located near the 3' prime end of the gene are more frequently associated with motor neuron or neuromuscular involvement so far. Our data indicate SYNE1 mutations are not an uncommon cause of recessive ataxia with or without additional clinical features in patients from various ethnicities. The use of next generation sequencing allows the rapid analysis of large genes and will likely reveal more SYNE1 associated cases and further expand genotype-phenotype correlations.


Assuntos
Ataxia Cerebelar/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Linhagem , Adulto , Idoso , Ataxia Cerebelar/complicações , Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/etnologia , Transtornos Cognitivos/etiologia , Estudos de Coortes , Proteínas do Citoesqueleto , Feminino , Estudos de Associação Genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Fenótipo , Índice de Gravidade de Doença , Sri Lanka , Turquia , Reino Unido
14.
Cell Rep ; 16(1): 79-91, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27320912

RESUMO

A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO) mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1), which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans.


Assuntos
Calpaína/genética , Ataxia Cerebelar/genética , Cerebelo/embriologia , Cerebelo/metabolismo , Envelhecimento/metabolismo , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Apoptose , Calpaína/química , Calpaína/metabolismo , Contagem de Células , Ataxia Cerebelar/patologia , Ataxia Cerebelar/fisiopatologia , Cerebelo/patologia , Cerebelo/fisiopatologia , Ativação Enzimática , Feminino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Deficiência Intelectual/fisiopatologia , Masculino , Camundongos Knockout , Atividade Motora , Espasticidade Muscular/genética , Espasticidade Muscular/patologia , Espasticidade Muscular/fisiopatologia , Mutação/genética , Proteínas Nucleares/metabolismo , Atrofia Óptica/genética , Atrofia Óptica/patologia , Atrofia Óptica/fisiopatologia , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Purkinje/patologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/fisiopatologia , Transmissão Sináptica
15.
Mov Disord Clin Pract ; 2(3): 271-273, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30363482

RESUMO

BACKGROUND: The homozygous missense mutation c.430G>T (p.G144W) in the GOSR2 gene has been repeatedly shown to cause progressive myoclonus epilepsy/ataxia. Thus far, no other disease associated GOSR2 mutation has been reported. METHODS: From epilepsy, movement disorder and genetic clinics 43 patients suffering from progressive myoclonus epilepsy/ataxia were screened for defects in GOSR2, SCARB2 and CSTB. RESULTS: A 61-year-old female patient suffering from progressive myoclonus epilepsy was found to be compound heterozygous for the known c.430G>T and a novel c.491_493delAGA (p.K164del) GOSR2 mutation. This is so far the oldest GOSR2 patient and her disease course seems overall milder. CONCLUSIONS: This finding further highlights the GOSR2 gene as a cause of progressive myoclonus epilepsy and expands the genotype for a potentially weaker disease allele.

16.
Neurology ; 85(1): 80-8, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26085604

RESUMO

OBJECTIVE: To determine the contribution of ADCY5 mutations in cases with genetically undefined benign hereditary chorea (BHC). METHODS: We studied 18 unrelated cases with BHC (7 familial, 11 sporadic) who were negative for NKX2-1 mutations. The diagnosis of BHC was based on the presence of a childhood-onset movement disorder, predominantly characterized by chorea and no other major neurologic features. ADCY5 analysis was performed by whole-exome sequencing or Sanger sequencing. ADCY5 and NKX2-1 expression during brain development and in the adult human brain was assessed using microarray analysis of postmortem brain tissue. RESULTS: The c.1252C>T; p.R418W mutation was identified in 2 cases (1 familial, 1 sporadic). The familial case inherited the mutation from the affected father, who had a much milder presentation, likely due to low-grade somatic mosaicism. The mutation was de novo in the sporadic case. The clinical presentation of these cases featured nonparoxysmal generalized chorea, as well as dystonia in the most severely affected, but no facial myokymia. We observed significant progression of symptoms in ADCY5 mutation carriers, in contrast to BHC secondary to NKX2-1 mutations. The difference in the clinical course is mirrored by the brain expression data, showing increasing ADCY5 expression in the striatum during brain development, whereas NKX2-1 shows an opposite trend. CONCLUSIONS: Our study identifies mutations in ADCY5, the gene previously linked to familial dyskinesia with facial myokymia, as a cause of familial and sporadic BHC. ADCY5 genetic analysis should be performed in cases with a benign choreiform movement disorder even in the absence of facial myokymia.


Assuntos
Adenilil Ciclases/genética , Coreia/diagnóstico , Coreia/genética , Mutação/genética , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
17.
JAMA Neurol ; 71(7): 831-9, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24862029

RESUMO

IMPORTANCE: The core clinical and neuropathological feature of the autosomal dominant spinocerebellar ataxias (SCAs) is cerebellar degeneration. Mutations in the known genes explain only 50% to 60% of SCA cases. To date, no effective treatments exist, and the knowledge of drug-treatable molecular pathways is limited. The examination of overlapping mechanisms and the interpretation of how ataxia genes interact will be important in the discovery of potential disease-modifying agents. OBJECTIVES: To address the possible relationships among known SCA genes, predict their functions, identify overlapping pathways, and provide a framework for candidate gene discovery using whole-transcriptome expression data. DESIGN, SETTING, AND PARTICIPANTS: We have used a systems biology approach based on whole-transcriptome gene expression analysis. As part of the United Kingdom Brain Expression Consortium, we analyzed the expression profile of 788 brain samples obtained from 101 neuropathologically healthy individuals (10 distinct brain regions each). Weighted gene coexpression network analysis was used to cluster 24 SCA genes into gene coexpression modules in an unsupervised manner. The overrepresentation of SCA transcripts in modules identified in the cerebellum was assessed. Enrichment analysis was performed to infer the functions and molecular pathways of genes in biologically relevant modules. MAIN OUTCOMES AND MEASURES: Molecular functions and mechanisms implicating SCA genes, as well as lists of relevant coexpressed genes as potential candidates for novel SCA causative or modifier genes. RESULTS: Two cerebellar gene coexpression modules were statistically enriched in SCA transcripts (P = .021 for the tan module and P = 2.87 × 10-5 for the light yellow module) and contained established granule and Purkinje cell markers, respectively. One module includes genes involved in the ubiquitin-proteasome system and contains SCA genes usually associated with a complex phenotype, while the other module encloses many genes important for calcium homeostasis and signaling and contains SCA genes associated mostly with pure ataxia. CONCLUSIONS AND RELEVANCE: Using normal gene expression in the human brain, we identified significant cell types and pathways in SCA pathogenesis. The overrepresentation of genes involved in calcium homeostasis and signaling may indicate an important target for therapy in the future. Furthermore, the gene networks provide new candidate genes for ataxias or novel genes that may be critical for cerebellar function.


Assuntos
Doenças Cerebelares/etiologia , Doenças Cerebelares/genética , Perfilação da Expressão Gênica/métodos , Ataxias Espinocerebelares/etiologia , Ataxias Espinocerebelares/genética , Bancos de Tecidos , Doenças Cerebelares/patologia , Regulação da Expressão Gênica/genética , Loci Gênicos/genética , Humanos , Mutação/genética
18.
Neurology ; 83(7): 612-9, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25008398

RESUMO

OBJECTIVE: To establish the phenotypic spectrum of KIF5A mutations and to investigate whether KIF5A mutations cause axonal neuropathy associated with hereditary spastic paraplegia (HSP) or typical Charcot-Marie-Tooth disease type 2 (CMT2). METHODS: KIF5A sequencing of the motor-domain coding exons was performed in 186 patients with the clinical diagnosis of HSP and in 215 patients with typical CMT2. Another 66 patients with HSP or CMT2 with pyramidal signs were sequenced for all exons of KIF5A by targeted resequencing. One additional patient was genetically diagnosed by whole-exome sequencing. RESULTS: Five KIF5A mutations were identified in 6 unrelated patients: R204W and D232N were novel mutations; R204Q, R280C, and R280H have been previously reported. Three patients had CMT2 as the predominant and presenting phenotype; 2 of them also had pyramidal signs. The other 3 patients presented with HSP but also had significant axonal neuropathy or other additional features. CONCLUSION: This is currently the largest study investigating KIF5A mutations. By combining next-generation sequencing and conventional sequencing, we confirm that KIF5A mutations can cause variable phenotypes ranging from HSP to CMT2. The identification of mutations in CMT2 broadens the phenotypic spectrum and underlines the importance of KIF5A mutations, which involve degeneration of both the central and peripheral nervous systems and should be tested in HSP and CMT2.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Cinesinas/genética , Mutação , Paraplegia Espástica Hereditária/genética , Adulto , Criança , Éxons , Família , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Degeneração Neural/genética , Linhagem , Fenótipo , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa