Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 41(14): e109217, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35670106

RESUMO

Varicella-Zoster virus (VZV) causes chickenpox and shingles. Although the infection is associated with severe morbidity in some individuals, molecular mechanisms that determine innate immune responses remain poorly defined. We found that the cGAS/STING DNA sensing pathway was required for type I interferon (IFN) induction during VZV infection and that recognition of VZV by cGAS restricted its replication. Screening of a VZV ORF expression library identified the essential VZV tegument protein ORF9 as a cGAS antagonist. Ectopically or virally expressed ORF9 bound to endogenous cGAS leading to reduced type I IFN responses to transfected DNA. Confocal microscopy revealed co-localisation of cGAS and ORF9. ORF9 and cGAS also interacted directly in a cell-free system and phase-separated together with DNA. Furthermore, ORF9 inhibited cGAMP production by cGAS. Taken together, these results reveal the importance of the cGAS/STING DNA sensing pathway for VZV recognition and identify a VZV immune antagonist that partially but directly interferes with DNA sensing via cGAS.


Assuntos
Herpesvirus Humano 3 , Interferon Tipo I , Nucleotidiltransferases , Proteínas Virais , DNA/metabolismo , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/imunologia , Humanos , Imunidade Inata , Interferon Tipo I/imunologia , Proteínas de Membrana/imunologia , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/imunologia , Proteínas Virais/imunologia
2.
EMBO Rep ; 21(12): e51345, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33155371

RESUMO

Cell-autonomous sensing of nucleic acids is essential for host defence against invading pathogens by inducing antiviral and inflammatory cytokines. cGAS has emerged in recent years as a non-redundant DNA sensor important for detection of many viruses and bacteria. Upon binding to DNA, cGAS synthesises the cyclic dinucleotide 2'3'-cGAMP that binds to the adaptor protein STING and thereby triggers IRF3- and NFκB-dependent transcription. In addition to infection, the pathophysiology of an ever-increasing number of sterile inflammatory conditions in humans involves the recognition of DNA through cGAS. Consequently, the cGAS/STING signalling axis has emerged as an attractive target for pharmacological modulation. However, the development of cGAS and STING inhibitors has just begun and a need for specific and effective compounds persists. In this review, we focus on cGAS and explore how its activation by immunostimulatory DNA is regulated by cellular mechanisms, viral immune modulators and small molecules. We further use our knowledge of cGAS modulation by cells and viruses to conceptualise potential new ways of pharmacological cGAS targeting.


Assuntos
Proteínas de Membrana , Nucleotidiltransferases , Citocinas , DNA/genética , Humanos , Proteínas de Membrana/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais
3.
Eur J Immunol ; 48(7): 1120-1136, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29572905

RESUMO

Zika virus (ZIKV) is a major public health concern in the Americas. We report that ZIKV infection and RNA extracted from ZIKV infected cells potently activated the induction of type I interferons (IFNs). This effect was fully dependent on the mitochondrial antiviral signaling protein (MAVS), implicating RIG-I-like receptors (RLRs) as upstream sensors of viral RNA. Indeed, RIG-I and the related RNA sensor MDA5 contributed to type I IFN induction in response to RNA from infected cells. We found that ZIKV NS5 from a recent Brazilian isolate blocked type I IFN induction downstream of RLRs and also inhibited type I IFN receptor (IFNAR) signaling. We defined the ZIKV NS5 nuclear localization signal and report that NS5 nuclear localization was not required for inhibition of signaling downstream of IFNAR. Mechanistically, NS5 blocked IFNAR signaling by both leading to reduced levels of STAT2 and by blocking phosphorylation of STAT1, two transcription factors activated by type I IFNs. Taken together, our observations suggest that ZIKV infection induces a type I IFN response via RLRs and that ZIKV interferes with this response by blocking signaling downstream of RLRs and IFNAR.


Assuntos
Proteína DEAD-box 58/imunologia , Interferon Tipo I/metabolismo , RNA/imunologia , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Proteínas não Estruturais Virais/metabolismo , Transporte Ativo do Núcleo Celular , Brasil , Proteína DEAD-box 58/genética , Regulação para Baixo , Células HEK293 , Humanos , Interferon Tipo I/genética , Fosforilação , Receptores Imunológicos , Transdução de Sinais , Replicação Viral , Zika virus , Infecção por Zika virus
4.
Cell Rep ; 43(5): 114122, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38652659

RESUMO

DNA sensing is important for antiviral immunity. The DNA sensor cGAS synthesizes 2'3'-cyclic GMP-AMP (cGAMP), a second messenger that activates STING, which induces innate immunity. cGAMP not only activates STING in the cell where it is produced but cGAMP also transfers to other cells. Transporters, channels, and pores (including SLC19A1, SLC46A2, P2X7, ABCC1, and volume-regulated anion channels (VRACs)) release cGAMP into the extracellular space and/or import cGAMP. We report that infection with multiple human viruses depletes some of these cGAMP conduits. This includes herpes simplex virus 1 (HSV-1) that targets SLC46A2, P2X7, and the VRAC subunits LRRC8A and LRRC8C for degradation. The HSV-1 protein UL56 is necessary and sufficient for these effects that are mediated at least partially by proteasomal turnover. UL56 thereby inhibits cGAMP uptake via VRAC, SLC46A2, and P2X7. Taken together, HSV-1 antagonizes intercellular cGAMP transfer. We propose that this limits innate immunity by reducing cell-to-cell communication via the immunotransmitter cGAMP.


Assuntos
Herpesvirus Humano 1 , Nucleotídeos Cíclicos , Animais , Humanos , Células HEK293 , Herpes Simples/virologia , Herpes Simples/metabolismo , Herpes Simples/imunologia , Herpesvirus Humano 1/fisiologia , Nucleotídeos Cíclicos/metabolismo , Proteínas Virais/metabolismo
5.
J Virol Methods ; 312: 114661, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36442623

RESUMO

Varicella-Zoster virus (VZV) is a human herpesvirus and causes chickenpox and shingles. Research into its molecular virology has been hampered by a lack of methods for generation of high-titre, cell-free infectious virus preparations. VZV propagation and infection in vitro are therefore commonly achieved by co-culture of uninfected 'target' cells with infected 'inoculum' cells. A major drawback of this approach is that it results in mixed cell populations after infection. To overcome this limitation we developed a transwell-based VZV infection system. Infected inoculum cells and uninfected target cells are spatially separated by a transwell membrane. While cell-cell contact and VZV spread can occur through membrane pores, the two cell populations do not mix. This simple protocol requires no special instrumentation or reagents. We successfully used this system for infection of a range of target cells and obtained pure populations for downstream analyses such as flow cytometry and RT-qPCR. In sum, we developed a broadly applicable approach to study the molecular and cellular biology as well as host-pathogen interactions of VZV.


Assuntos
Varicela , Herpes Zoster , Humanos , Herpesvirus Humano 3
6.
Elife ; 112022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35475759

RESUMO

Host proteins sense viral products and induce defence mechanisms, particularly in immune cells. Using cell-free assays and quantitative mass spectrometry, we determined the interactome of capsid-host protein complexes of herpes simplex virus and identified the large dynamin-like GTPase myxovirus resistance protein B (MxB) as an interferon-inducible protein interacting with capsids. Electron microscopy analyses showed that cytosols containing MxB had the remarkable capability to disassemble the icosahedral capsids of herpes simplex viruses and varicella zoster virus into flat sheets of connected triangular faces. In contrast, capsids remained intact in cytosols with MxB mutants unable to hydrolyse GTP or to dimerize. Our data suggest that MxB senses herpesviral capsids, mediates their disassembly, and thereby restricts the efficiency of nuclear targeting of incoming capsids and/or the assembly of progeny capsids. The resulting premature release of viral genomes from capsids may enhance the activation of DNA sensors, and thereby amplify the innate immune responses.


Assuntos
Capsídeo , Herpesviridae , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Interferons/metabolismo , Simplexvirus
7.
Sci Rep ; 11(1): 13638, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34211037

RESUMO

Human cells respond to infection by SARS-CoV-2, the virus that causes COVID-19, by producing cytokines including type I and III interferons (IFNs) and proinflammatory factors such as IL6 and TNF. IFNs can limit SARS-CoV-2 replication but cytokine imbalance contributes to severe COVID-19. We studied how cells detect SARS-CoV-2 infection. We report that the cytosolic RNA sensor MDA5 was required for type I and III IFN induction in the lung cancer cell line Calu-3 upon SARS-CoV-2 infection. Type I and III IFN induction further required MAVS and IRF3. In contrast, induction of IL6 and TNF was independent of the MDA5-MAVS-IRF3 axis in this setting. We further found that SARS-CoV-2 infection inhibited the ability of cells to respond to IFNs. In sum, we identified MDA5 as a cellular sensor for SARS-CoV-2 infection that induced type I and III IFNs.


Assuntos
COVID-19/imunologia , Interferon Tipo I/imunologia , Helicase IFIH1 Induzida por Interferon/imunologia , Interferons/imunologia , SARS-CoV-2/imunologia , Linhagem Celular , Humanos , Imunidade Inata , RNA/imunologia , Interferon lambda
8.
Cells ; 9(6)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560274

RESUMO

The Zika virus (ZIKV) has received much attention due to an alarming increase in cases of neurological disorders including congenital Zika syndrome associated with infection. To date, there is no effective treatment available. An immediate response by the innate immune system is crucial for effective control of the virus. Using CRISPR/Cas9-mediated knockouts in A549 cells, we investigated the individual contributions of the RIG-I-like receptors MDA5 and RIG-I to ZIKV sensing and control of this virus by using a Brazilian ZIKV strain. We show that RIG-I is the main sensor for ZIKV in A549 cells. Surprisingly, we observed that loss of RIG-I and consecutive type I interferon (IFN) production led to virus-induced apoptosis. ZIKV non-structural protein NS5 was reported to interfere with type I IFN receptor signaling. Additionally, we show that ZIKV NS5 inhibits type I IFN induction. Overall, our study highlights the importance of RIG-I-dependent ZIKV sensing for the prevention of virus-induced cell death and shows that NS5 inhibits the production of type I IFN.


Assuntos
Morte Celular/fisiologia , Proteína DEAD-box 58/metabolismo , Receptores Imunológicos/metabolismo , Infecção por Zika virus/virologia , Animais , Chlorocebus aethiops/virologia , Humanos , Imunidade Inata/imunologia , Transdução de Sinais/imunologia , Células Vero/virologia , Proteínas não Estruturais Virais/metabolismo , Zika virus/imunologia , Zika virus/metabolismo , Infecção por Zika virus/imunologia
9.
J Exp Med ; 217(11)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32725128

RESUMO

Heterozygous missense mutations in coatomer protein subunit α, COPA, cause a syndrome overlapping clinically with type I IFN-mediated disease due to gain-of-function in STING, a key adaptor of IFN signaling. Recently, increased levels of IFN-stimulated genes (ISGs) were described in COPA syndrome. However, the link between COPA mutations and IFN signaling is unknown. We observed elevated levels of ISGs and IFN-α in blood of symptomatic COPA patients. In vitro, both overexpression of mutant COPA and silencing of COPA induced STING-dependent IFN signaling. We detected an interaction between COPA and STING, and mutant COPA was associated with an accumulation of ER-resident STING at the Golgi. Given the known role of the coatomer protein complex I, we speculate that loss of COPA function leads to enhanced type I IFN signaling due to a failure of Golgi-to-ER STING retrieval. These data highlight the importance of the ER-Golgi axis in the control of autoinflammation and inform therapeutic strategies in COPA syndrome.


Assuntos
Proteína Coatomer/genética , Proteína Coatomer/metabolismo , Complexo de Golgi/metabolismo , Interferon Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Transdução de Sinais/genética , Adolescente , Adulto , Criança , Retículo Endoplasmático/metabolismo , Feminino , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Transporte Proteico/genética , Células THP-1 , Transfecção , Adulto Jovem
10.
Nat Genet ; 52(12): 1364-1372, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33230297

RESUMO

Inappropriate stimulation or defective negative regulation of the type I interferon response can lead to autoinflammation. In genetically uncharacterized cases of the type I interferonopathy Aicardi-Goutières syndrome, we identified biallelic mutations in LSM11 and RNU7-1, which encode components of the replication-dependent histone pre-mRNA-processing complex. Mutations were associated with the misprocessing of canonical histone transcripts and a disturbance of linker histone stoichiometry. Additionally, we observed an altered distribution of nuclear cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) and enhanced interferon signaling mediated by the cGAS-stimulator of interferon genes (STING) pathway in patient-derived fibroblasts. Finally, we established that chromatin without linker histone stimulates cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) production in vitro more efficiently. We conclude that nuclear histones, as key constituents of chromatin, are essential in suppressing the immunogenicity of self-DNA.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Interferon Tipo I/biossíntese , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/genética , Ribonucleoproteína Nuclear Pequena U7/genética , Doenças Autoimunes do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/imunologia , Linhagem Celular , DNA/imunologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Células HCT116 , Células HEK293 , Doenças Hereditárias Autoinflamatórias/genética , Doenças Hereditárias Autoinflamatórias/imunologia , Humanos , Proteínas de Membrana/metabolismo , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/imunologia , Nucleotídeos Cíclicos/biossíntese , Nucleotidiltransferases/metabolismo
11.
Genome Biol Evol ; 6(9): 2274-88, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25169981

RESUMO

Tubulins belong to the most abundant proteins in eukaryotes providing the backbone for many cellular substructures like the mitotic and meiotic spindles, the intracellular cytoskeletal network, and the axonemes of cilia and flagella. Homologs have even been reported for archaea and bacteria. However, a taxonomically broad and whole-genome-based analysis of the tubulin protein family has never been performed, and thus, the number of subfamilies, their taxonomic distribution, and the exact grouping of the supposed archaeal and bacterial homologs are unknown. Here, we present the analysis of 3,524 tubulins from 504 species. The tubulins formed six major subfamilies, α to ζ. Species of all major kingdoms of the eukaryotes encode members of these subfamilies implying that they must have already been present in the last common eukaryotic ancestor. The proposed archaeal homologs grouped together with the bacterial TubZ proteins as sister clade to the FtsZ proteins indicating that tubulins are unique to eukaryotes. Most species contained α- and/or ß-tubulin gene duplicates resulting from recent branch- and species-specific duplication events. This shows that tubulins cannot be used for constructing species phylogenies without resolving their ortholog-paralog relationships. The many gene duplicates and also the independent loss of the δ-, ε-, or ζ-tubulins, which have been shown to be part of the triplet microtubules in basal bodies, suggest that tubulins can functionally substitute each other.


Assuntos
Eucariotos/genética , Evolução Molecular , Duplicação Gênica , Família Multigênica , Tubulina (Proteína)/genética , Sequência de Aminoácidos , Animais , Archaea/genética , Bactérias/genética , Eucariotos/química , Eucariotos/classificação , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Tubulina (Proteína)/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa