Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 18(2): e1009974, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35143486

RESUMO

Wide-ranging animals, including migratory species, are significantly threatened by the effects of habitat fragmentation and habitat loss. In the case of terrestrial mammals, this results in nearly a quarter of species being at risk of extinction. Caribou are one such example of a wide-ranging, migratory, terrestrial, and endangered mammal. In populations of caribou, the proportion of individuals considered as "migrants" can vary dramatically. There is therefore a possibility that, under the condition that migratory behavior is genetically determined, those individuals or populations that are migratory will be further impacted by humans, and this impact could result in the permanent loss of the migratory trait in some populations. However, genetic determination of migration has not previously been studied in an endangered terrestrial mammal. We examined migratory behavior of 139 GPS-collared endangered caribou in western North America and carried out genomic scans for the same individuals. Here we determine a genetic subdivision of caribou into a Northern and a Southern genetic cluster. We also detect >50 SNPs associated with migratory behavior, which are in genes with hypothesized roles in determining migration in other organisms. Furthermore, we determine that propensity to migrate depends upon the proportion of ancestry in individual caribou, and thus on the evolutionary history of its migratory and sedentary subspecies. If, as we report, migratory behavior is influenced by genes, caribou could be further impacted by the loss of the migratory trait in some isolated populations already at low numbers. Our results indicating an ancestral genetic component also suggest that the migratory trait and their associated genetic mutations could not be easily re-established when lost in a population.


Assuntos
Migração Animal/fisiologia , Genoma/genética , Rena/genética , Animais , Comportamento Animal/fisiologia , Evolução Biológica , Conservação dos Recursos Naturais/métodos , Ecologia/métodos , Ecossistema , Espécies em Perigo de Extinção/estatística & dados numéricos , Feminino , Genômica/métodos , Haplótipos , América do Norte , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos
2.
Ecol Appl ; 34(4): e2965, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38629596

RESUMO

Habitat loss is affecting many species, including the southern mountain caribou (Rangifer tarandus caribou) population in western North America. Over the last half century, this threatened caribou population's range and abundance have dramatically contracted. An integrated population model was used to analyze 51 years (1973-2023) of demographic data from 40 southern mountain caribou subpopulations to assess the effectiveness of population-based recovery actions at increasing population growth. Reducing potential limiting factors on threatened caribou populations offered a rare opportunity to identify the causes of decline and assess methods of recovery. Southern mountain caribou abundance declined by 51% between 1991 and 2023, and 37% of subpopulations were functionally extirpated. Wolf reduction was the only recovery action that consistently increased population growth when applied in isolation, and combinations of wolf reductions with maternal penning or supplemental feeding provided rapid growth but were applied to only four subpopulations. As of 2023, recovery actions have increased the abundance of southern mountain caribou by 52%, compared to a simulation with no interventions. When predation pressure was reduced, rapid population growth was observed, even under contemporary climate change and high levels of habitat loss. Unless predation is reduced, caribou subpopulations will continue to be extirpated well before habitat conservation and restoration can become effective.


Assuntos
Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Rena , Animais , Rena/fisiologia , Conservação dos Recursos Naturais/métodos , Modelos Biológicos , Dinâmica Populacional , Lobos/fisiologia , Ecossistema
3.
Conserv Genet ; 24(6): 855-867, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37969360

RESUMO

Conservation breeding programs are increasingly used as recovery actions for wild animals; bringing founders into captivity to rear captive populations for future reintroduction into the wild. The International Union for the Conservation of Nature recommends that founders should come from genetically close populations and should have sufficient genetic diversity to avoid mating among relatives. Genomic data are highly informative for evaluating founders due to their high resolution and ability to capture adaptive divergence, yet, their application in that context remains limited. Woodland caribou are federally listed as a Species at Risk in Canada, with several populations facing extirpation, such as those in the Rocky Mountains of Alberta and British Columbia (BC). To prevent local extirpation, Jasper National Park (JNP) is proposing a conservation breeding program. We examined single nucleotide polymorphisms for 144 caribou from 11 populations encompassing a 200,0002 km area surrounding JNP to provide information useful for identifying appropriate founders for this program. We found that this area likely hosts a caribou metapopulation historically characterized by high levels of gene flow, which indicates that multiple sources of founders would be appropriate for initiating a breeding program. However, population structure and adaptive divergence analyses indicate that JNP caribou are closest to populations in the BC Columbia range, which also have suitable genetic diversity for conservation breeding. We suggest that collaboration among jurisdictions would be beneficial to implement the program to promote recovery of JNP caribou and possibly other caribou populations in the surrounding area, which is strategically at the periphery of the distribution of this endangered species. Supplementary Information: The online version contains supplementary material available at 10.1007/s10592-023-01540-3.

4.
Ecol Appl ; 32(3): e2549, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35094462

RESUMO

Climate change will lead to more frequent and more severe fires in some areas of boreal forests, affecting the distribution and availability of late-successional forest communities. These forest communities help to protect globally significant carbon reserves beneath permafrost layers and provide habitat for many animal species, including forest-dwelling caribou. Many caribou populations are declining, yet the mechanisms by which changing fire regimes could affect caribou declines are poorly understood. We analyzed resource selection of 686 GPS-collared female caribou from three ecotypes and 15 populations in a ~600,000 km2 region of northwest Canada and eastern Alaska. These populations span a wide gradient of fire frequency but experience low levels of human-caused habitat disturbance. We used a mixed-effects modeling framework to characterize caribou resource selection in response to burns at different seasons and spatiotemporal scales, and to test for functional responses in resource selection to burn availability. We also tested mechanisms driving observed selection patterns using burn severity and lichen cover data. Caribou avoided burns more strongly during winter relative to summer and at larger spatiotemporal scales relative to smaller scales. During the winter, caribou consistently avoided burns at both spatiotemporal scales as burn availability increased, indicating little evidence of a functional response. However, they decreased their avoidance of burns during summer as burn availability increased. Burn availability explained more variation in caribou selection for burns than ecotype. Within burns, caribou strongly avoided severely burned areas in winter, and this avoidance lasted nearly 30 years after a fire. Caribou within burns also selected higher cover of terrestrial lichen (an important caribou food source). We found a negative relationship between burn severity and lichen cover, confirming that caribou avoidance of burns was consistent with lower lichen abundance. Consistent winter avoidance of burns and severely burned areas suggests that caribou will experience increasing winter habitat loss as fire frequency and severity increase. Our results highlight the potential for climate-induced alteration of natural disturbance regimes to affect boreal biodiversity through habitat loss. We suggest that management strategies prioritizing protection of core winter range habitat with lower burn probabilities would provide important climate-change refugia for caribou.


Assuntos
Incêndios , Rena , Animais , Ecossistema , Feminino , Florestas , Rena/fisiologia , Taiga
5.
Conserv Biol ; 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35146809

RESUMO

Genetic mechanisms determining habitat selection and specialization of individuals within species have been hypothesized, but not tested at the appropriate individual level in nature. In this work, we analyzed habitat selection for 139 GPS-collared caribou belonging to three declining ecotypes sampled throughout Northwestern Canada. We used Resource Selection Functions (RSFs) comparing resources at used and available locations. We found that the three caribou ecotypes differed in their use of habitat suggesting specialization. On expected grounds, we also found differences in habitat selection between summer and winter, but also, originally, among the individuals within an ecotype. We next obtained Single Nucleotide Polymorphisms (SNPs) for the same caribou individuals, we detected those associated to habitat selection, and then identified genes linked to these SNPs. These genes had functions related in other organisms to habitat and dietary specializations, and climatic adaptations. We therefore suggest that individual variation in habitat selection was based on genotypic variation in the SNPs of individual caribou, indicating that genetic forces underlie habitat and diet selection in the species. We also suggest that the associations between habitat and genes that we detected may lead to lack of resilience in the species, thus contributing to caribou endangerment. Our work emphasizes that similar mechanisms may exist for other specialized, endangered species. This article is protected by copyright. All rights reserved.

6.
Proc Natl Acad Sci U S A ; 116(13): 6181-6186, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30858314

RESUMO

Adaptive management is a powerful means of learning about complex ecosystems, but is rarely used for recovering endangered species. Here, we demonstrate how it can benefit woodland caribou, which became the first large mammal extirpated from the contiguous United States in recent history. The continental scale of forest alteration and extended time needed for forest recovery means that relying only on habitat protection and restoration will likely fail. Therefore, population management is also needed as an emergency measure to avoid further extirpation. Reductions of predators and overabundant prey, translocations, and creating safe havens have been applied in a design covering >90,000 km2 Combinations of treatments that increased multiple vital rates produced the highest population growth. Moreover, the degree of ecosystem alteration did not influence this pattern. By coordinating recovery involving scientists, governments, and First Nations, treatments were applied across vast scales to benefit this iconic species.


Assuntos
Conservação dos Recursos Naturais/métodos , Espécies em Perigo de Extinção , Rena , Animais , Ecossistema , Cadeia Alimentar , Estados Unidos
7.
Proc Biol Sci ; 288(1943): 20202811, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33468013

RESUMO

Changes in primary productivity have the potential to substantially alter food webs, with positive outcomes for some species and negative outcomes for others. Understanding the environmental context and species traits that give rise to these divergent outcomes is a major challenge to the generality of both theoretical and applied ecology. In aquatic systems, nutrient-mediated eutrophication has led to major declines in species diversity, motivating us to seek terrestrial analogues using a large-mammal system across 598 000 km2 of the Canadian boreal forest. These forests are undergoing some of the most rapid rates of land-use change on Earth and are home to declining caribou (Rangifer tarandus caribou) populations. Using satellite-derived estimates of primary productivity, coupled with estimates of moose (Alces alces) and wolf (Canis lupus) abundance, we used path analyses to discriminate among hypotheses explaining how habitat alteration can affect caribou population growth. Hypotheses included food limitation, resource dominance by moose over caribou, and apparent competition with predators shared between moose and caribou. Results support apparent competition and yield estimates of wolf densities (1.8 individuals 1000 km-2) above which caribou populations decline. Our multi-trophic analysis provides insight into the cascading effects of habitat alteration from forest cutting that destabilize terrestrial predator-prey dynamics. Finally, the path analysis highlights why conservation actions directed at the proximate cause of caribou decline have been more successful in the near term than those directed further along the trophic chain.


Assuntos
Rena , Lobos , Animais , Canadá , Ecossistema , Eutrofização , Comportamento Predatório
8.
Mol Ecol ; 30(23): 6121-6143, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34482596

RESUMO

Pleistocene glacial cycles influenced the diversification of high-latitude wildlife species through recurrent periods of range contraction, isolation, divergence, and expansion from refugia and subsequent admixture of refugial populations. We investigate population size changes and the introgressive history of caribou (Rangifer tarandus) in western Canada using 33 whole genome sequences coupled with larger-scale mitochondrial data. We found that a major population expansion of caribou occurred starting around 110,000 years ago (kya), the start of the last glacial period. Additionally, we found effective population sizes of some caribou reaching ~700,000 to 1,000,000 individuals, one of the highest recorded historical effective population sizes for any mammal species thus far. Mitochondrial analyses dated introgression events prior to the LGM dating to 20-30 kya and even more ancient at 60 kya, coinciding with colder periods with extensive ice coverage, further demonstrating the importance of glacial cycles and events prior to the LGM in shaping demographic history. Reconstructing the origins and differential introgressive history has implications for predictions on species responses under climate change. Our results have implications for other whole genome analyses using pairwise sequentially Markovian coalescent (PSMC) analyses, as well as highlighting the need to investigate pre-LGM demographic patterns to fully reconstruct the origin of species diversity, especially for high-latitude species.


Assuntos
Rena , Animais , Mudança Climática , DNA Mitocondrial/genética , Variação Genética , Genoma , Humanos , Filogenia , Densidade Demográfica , Dinâmica Populacional , Rena/genética
9.
Mol Ecol ; 28(8): 1946-1963, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30714247

RESUMO

Selection forces that favour different phenotypes in different environments can change frequencies of genes between populations along environmental clines. Clines are also compatible with balancing forces, such as negative frequency-dependent selection (NFDS), which maintains phenotypic polymorphisms within populations. For example, NFDS is hypothesized to maintain partial migration, a dimorphic behavioural trait prominent in species where only a fraction of the population seasonally migrates. Overall, NFDS is believed to be a common phenomenon in nature, yet a scarcity of studies were published linking naturally occurring allelic variation with bimodal or multimodal phenotypes and balancing selection. We applied a Pool-seq approach and detected selection on alleles associated with environmental variables along a North-South gradient in western North American caribou, a species displaying partially migratory behaviour. On 51 loci, we found a signature of balancing selection, which could be related to NFDS and ultimately the maintenance of the phenotypic polymorphisms known within these populations. Yet, remarkably, we detected directional selection on a locus when our sample was divided into two behaviourally distinctive groups regardless of geographic provenance (a subset of GPS-collared migratory or sedentary individuals), indicating that, within populations, phenotypically homogeneous groups were genetically distinctive. Loci under selection were linked to functional genes involved in oxidative stress response, body development and taste perception. Overall, results indicated genetic differentiation along an environmental gradient of caribou populations, which we found characterized by genes potentially undergoing balancing selection. We suggest that the underlining balancing force, NFDS, plays a strong role within populations harbouring multiple haplotypes and phenotypes, as it is the norm in animals, plants and humans too.


Assuntos
Comportamento Animal , Genética Populacional , Rena/genética , Seleção Genética/genética , Alelos , Migração Animal , Animais , Deriva Genética , Marcadores Genéticos/genética , Variação Genética/genética , Haplótipos/genética , Humanos , Fenótipo , Polimorfismo Genético , Rena/fisiologia , Estações do Ano
10.
Wildl Soc Bull ; 43(1): 167-177, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31007303

RESUMO

Woodland caribou (Rangifer tarandus caribou) are threatened in Canada, with population and distribution declines evident in most regions of the country. Causes of declines are linked to landscape change from forest fires and human development, notably forestry oil and gas activities, which result in caribou habitat loss and affect ecosystem food webs. The Federal Species at Risk Act requires effective protection and restoration of caribou habitat, with actions to increase caribou survival. These requirements call for effective monitoring of caribou population trends to gauge success. Many woodland caribou populations are nearly impossible to count using traditional aerial survey methods, but demographic-based monitoring approaches can be used to estimate population trends based on population modeling of vital rates from marked animals. Monitoring programs have used a well-known simple population model (the Recruitment-Mortality [R/M] equation) to estimate demographic rates for woodland caribou, but have faced challenges in managing large data streams and providing transparency in the demographic estimation process. We present a stand-alone statistical software application using open-source software to permit efficient, transparent, and replicable demographic estimation for woodland caribou populations. We developed an easy-to-use, interactive web-based application for the R/M population model that uses a Bayesian estimation approach and provides the user flexibility in choice of prior distributions and other output features. We illustrate the web-application to the A la Pêche Southern Mountain (Central Group) woodland caribou population in west-central Alberta, Canada, during 1998-2017. Our estimates of population demographics are consistent with previous research on this population and highlight the utility of the application in assessing caribou population responses to species recovery actions. We provide example data, computer code, the web-based application package, and a user manual to guide installation and use. We also review underlying assumptions and challenges of population monitoring in this case study. We expect our software will contribute to efficient monitoring of woodland caribou and help in the assessment of recovery actions for this species. © 2019 The Authors. Wildlife Society Bulletin Published by Wiley Periodicals, Inc.

11.
Curr Biol ; 34(6): 1234-1246.e7, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38417444

RESUMO

High intra-specific genetic diversity is associated with adaptive potential, which is key for resilience to global change. However, high variation may also support deleterious alleles through genetic load, thereby increasing the risk of inbreeding depression if population sizes decrease. Purging of deleterious variation has been demonstrated in some threatened species. However, less is known about the costs of declines and inbreeding in species with large population sizes and high genetic diversity even though this encompasses many species globally that are expected to undergo population declines. Caribou is a species of ecological and cultural significance in North America with a wide distribution supporting extensive phenotypic variation but with some populations undergoing significant declines resulting in their at-risk status in Canada. We assessed intra-specific genetic variation, adaptive divergence, inbreeding, and genetic load across populations with different demographic histories using an annotated chromosome-scale reference genome and 66 whole-genome sequences. We found high genetic diversity and nine phylogenomic lineages across the continent with adaptive diversification of genes, but also high genetic load among lineages. We found highly divergent levels of inbreeding across individuals, including the loss of alleles by drift but not increased purging in inbred individuals, which had more homozygous deleterious alleles. We also found comparable frequencies of homozygous deleterious alleles between lineages regardless of nucleotide diversity. Thus, further inbreeding may need to be mitigated through conservation efforts. Our results highlight the "double-edged sword" of genetic diversity that may be representative of other species atrisk affected by anthropogenic activities.


Assuntos
Genética Populacional , Rena , Humanos , Animais , Carga Genética , Endogamia , Dinâmica Populacional , Variação Genética
12.
Mov Ecol ; 10(1): 12, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35272704

RESUMO

BACKGROUND: Several migratory ungulates, including caribou, are dramatically declining. Caribou of the Barren-ground ecotype, which forms its own subspecies, are known to be mainly migratory. By contrast, within the Woodland subspecies, animals of the Boreal ecotype are known to be mainly sedentary, while those within the Northern and Central Mountain ecotypes to be partially migratory, with only some individuals migrating. Promotion of conservation actions (e.g., habitat protection) that are specific to both residents and migrants, as well as to the areas they frequent seasonally (which may be separate for migrants), requires distinguishing migration from other movement behaviours, which might be a challenge. METHODS: We aimed at assessing seasonal movement behaviours, including migratory, resident, dispersing, and nomadic, for caribou belonging to the Barren-ground and Woodland subspecies and ecotypes. We examined seasonal displacement, both planar and altitudinal, and seasonal ranges overlap for 366 individuals that were GPS-collared in Northern and Western Canada. Lastly, we assessed the ability of caribou individuals to switch between migratory and non-migratory movement behaviours between years. RESULTS: We detected migratory behaviour within each of the studied subspecies and ecotypes. However, seasonal ranges overlap (an index of sedentary behaviour) varied, with proportions of clear migrants (0 overlap) of 40.94% for Barren-ground caribou and 23.34% for Woodland caribou, and of 32.95%, 54.87%, and 8.86% for its Northern Mountain, Central Mountain, and Boreal ecotype, respectively. Plastic switches of individuals were also detected between migratory, resident, dispersing, and nomadic seasonal movements performed across years. CONCLUSIONS: Our unexpected findings of marked seasonal movement plasticity in caribou indicate that this phenomenon should be better studied to understand the resilience of this endangered species to habitat and climatic changes. Our results that a substantial proportion of individuals engaged in seasonal migration in all studied ecotypes indicate that caribou conservation plans should account for critical habitat in both summer and winter ranges. Accordingly, conservation strategies are being devised for the Woodland subspecies and its ecotypes, which were found to be at least partially migratory in this study. Our findings that migration is detectable with both planar and altitudinal analyses of seasonal displacement provide a tool to better define seasonal ranges, also in mountainous and hilly environments, and protect habitat there.

13.
J Wildl Dis ; 58(4): 931-934, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35867976

RESUMO

An emaciated, 14-yr-old female boreal woodland caribou (Rangifer tarandus caribou) was found dead with an ulcerated wound on the left side of the head. Radiographs documented osteolysis of portions of the mandible and cranium. Histopathology revealed an invasive adenocarcinoma infiltrating the soft tissues and bones of the head.


Assuntos
Feminino , Animais , Alberta/epidemiologia
14.
PLoS One ; 16(10): e0258136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34624030

RESUMO

As global climate change progresses, wildlife management will benefit from knowledge of demographic responses to climatic variation, particularly for species already endangered by other stressors. In Canada, climate change is expected to increasingly impact populations of threatened woodland caribou (Rangifer tarandus caribou) and much focus has been placed on how a warming climate has potentially facilitated the northward expansion of apparent competitors and novel predators. Climate change, however, may also exert more direct effects on caribou populations that are not mediated by predation. These effects include meteorological changes that influence resource availability and energy expenditure. Research on other ungulates suggests that climatic variation may have minimal impact on low-density populations such as woodland caribou because per-capita resources may remain sufficient even in "bad" years. We evaluated this prediction using demographic data from 21 populations in western Canada that were monitored for various intervals between 1994 and 2015. We specifically assessed whether juvenile recruitment and adult female survival were correlated with annual variation in meteorological metrics and plant phenology. Against expectations, we found that both vital rates appeared to be influenced by annual climatic variation. Juvenile recruitment was primarily correlated with variation in phenological conditions in the year prior to birth. Adult female survival was more strongly correlated with meteorological conditions and declined during colder, more variable winters. These responses may be influenced by the life history of woodland caribou, which reside in low-productivity refugia where small climatic changes may result in changes to resources that are sufficient to elicit strong demographic effects. Across all models, explained variation in vital rates was low, suggesting that other factors had greater influence on caribou demography. Nonetheless, given the declining trajectories of many woodland caribou populations, our results highlight the increased relevance of recovery actions when adverse climatic conditions are likely to negatively affect caribou demography.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Mamíferos/fisiologia , Rena/fisiologia , Animais , Animais Selvagens/fisiologia , Canadá , Mudança Climática , Espécies em Perigo de Extinção , Meteorologia , Modelos Biológicos , Dinâmica Populacional , Comportamento Predatório , Estações do Ano
15.
Ecol Evol ; 10(20): 11631-11642, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33144989

RESUMO

Accurately estimating abundance is a critical component of monitoring and recovery of rare and elusive species. Spatial capture-recapture (SCR) models are an increasingly popular method for robust estimation of ecological parameters. We provide an analytical framework to assess results from empirical studies to inform SCR sampling design, using both simulated and empirical data from noninvasive genetic sampling of seven boreal caribou populations (Rangifer tarandus caribou), which varied in range size and estimated population density. We use simulated population data with varying levels of clustered distributions to quantify the impact of nonindependence of detections on density estimates, and empirical datasets to explore the influence of varied sampling intensity on the relative bias and precision of density estimates. Simulations revealed that clustered distributions of detections did not significantly impact relative bias or precision of density estimates. The genotyping success rate of our empirical dataset (n = 7,210 samples) was 95.1%, and 1,755 unique individuals were identified. Analysis of the empirical data indicated that reduced sampling intensity had a greater impact on density estimates in smaller ranges. The number of captures and spatial recaptures was strongly correlated with precision, but not absolute relative bias. The best sampling designs did not differ with estimated population density but differed between large and small ranges. We provide an efficient framework implemented in R to estimate the detection parameters required when designing SCR studies. The framework can be used when designing a monitoring program to minimize effort and cost while maximizing effectiveness, which is critical for informing wildlife management and conservation.

16.
Ecol Evol ; 9(1): 141-153, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30680102

RESUMO

Isolation by distance (IBD) is a natural pattern not readily incorporated into theoretical models nor traditional metrics for differentiating populations, although clinal genetic differentiation can be characteristic of many wildlife species. Landscape features can also drive population structure additive to baseline IBD resulting in differentiation through isolation-by-resistance (IBR). We assessed the population genetic structure of boreal caribou across western Canada using nonspatial (STRUCTURE) and spatial (MEMGENE) clustering methods and investigated the relative contribution of IBD and IBR on genetic variation of 1,221 boreal caribou multilocus genotypes across western Canada. We further introduced a novel approach to compare the partitioning of individuals into management units (MU) and assessed levels of genetic connectivity under different MU scenarios. STRUCTURE delineated five genetic clusters while MEMGENE identified finer-scale differentiation across the study area. IBD was significant and did not differ for males and females both across and among detected genetic clusters. MEMGENE landscape analysis further quantified the proportion of genetic variation contributed by IBD and IBR patterns, allowing for the relative importance of spatial drivers, including roads, water bodies, and wildfires, to be assessed and incorporated into the characterization of population structure for the delineation of MUs. Local population units, as currently delineated in the boreal caribou recovery strategy, do not capture the genetic variation and connectivity of the ecotype across the study area. Here, we provide the tools to assess fine-scale spatial patterns of genetic variation, partition drivers of genetic variation, and evaluate the best management options for maintaining genetic connectivity. Our approach is highly relevant to vagile wildlife species that are of management and conservation concern and demonstrate varying degrees of IBD and IBR with clinal spatial genetic structure that challenges the delineation of discrete population boundaries.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa