Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Genes Dev ; 31(19): 2003-2014, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29089422

RESUMO

Histone H3 Lys4 (H3K4) methylation is a chromatin feature enriched at gene cis-regulatory sequences such as promoters and enhancers. Here we identify an evolutionarily conserved factor, BRWD2/PHIP, which colocalizes with histone H3K4 methylation genome-wide in human cells, mouse embryonic stem cells, and Drosophila Biochemical analysis of BRWD2 demonstrated an association with the Cullin-4-RING ubiquitin E3 ligase-4 (CRL4) complex, nucleosomes, and chromatin remodelers. BRWD2/PHIP binds directly to H3K4 methylation through a previously unidentified chromatin-binding module related to Royal Family Tudor domains, which we named the CryptoTudor domain. Using CRISPR-Cas9 genetic knockouts, we demonstrate that COMPASS H3K4 methyltransferase family members differentially regulate BRWD2/PHIP chromatin occupancy. Finally, we demonstrate that depletion of the single Drosophila homolog dBRWD3 results in altered gene expression and aberrant patterns of histone H3 Lys27 acetylation at enhancers and promoters, suggesting a cross-talk between these chromatin modifications and transcription through the BRWD protein family.


Assuntos
Drosophila melanogaster/genética , Regulação da Expressão Gênica , Histonas/metabolismo , Domínio Tudor , Acetilação , Animais , Sistemas CRISPR-Cas , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Elementos Facilitadores Genéticos , Epigênese Genética , Técnicas de Inativação de Genes , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Metilação , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Mol Cell ; 63(2): 318-328, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27447986

RESUMO

Polycomb response elements (PREs) are specific DNA sequences that stably maintain the developmental pattern of gene expression. Drosophila PREs are well characterized, whereas the existence of PREs in mammals remains debated. Accumulating evidence supports a model in which CpG islands recruit Polycomb group (PcG) complexes; however, which subset of CGIs is selected to serve as PREs is unclear. Trithorax (Trx) positively regulates gene expression in Drosophila and co-occupies PREs to antagonize Polycomb-dependent silencing. Here we demonstrate that Trx-dependent H3K4 dimethylation (H3K4me2) marks Drosophila PREs and maintains the developmental expression pattern of nearby genes. Similarly, the mammalian Trx homolog, MLL1, deposits H3K4me2 at CpG-dense regions that could serve as PREs. In the absence of MLL1 and H3K4me2, H3K27me3 levels, a mark of Polycomb repressive complex 2 (PRC2), increase at these loci. By inhibiting PRC2-dependent H3K27me3 in the absence of MLL1, we can rescue expression of these loci, demonstrating a functional balance between MLL1 and PRC2 activities at these sites. Thus, our study provides rules for identifying cell-type-specific functional mammalian PREs within the human genome.


Assuntos
Proteínas Cromossômicas não Histona/genética , Neoplasias Colorretais/genética , Ilhas de CpG , Metilação de DNA , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Evolução Molecular , Histona-Lisina N-Metiltransferase/genética , Proteína de Leucina Linfoide-Mieloide/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Elementos de Resposta , Animais , Proteínas Cromossômicas não Histona/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Interferência de RNA , Especificidade da Espécie , Transcrição Gênica , Transfecção
4.
Mol Cell ; 53(6): 859-66, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24656127

RESUMO

Why certain point mutations in a general transcription factor are associated with specific forms of cancer has been a major question in cancer biology. Enhancers are DNA regulatory elements that are key regulators of tissue-specific gene expression. Recent studies suggest that enhancer malfunction through point mutations in either regulatory elements or factors modulating enhancer-promoter communication could be the cause of tissue-specific cancer development. In this Perspective, we will discuss recent findings in the identification of cancer-related enhancer mutations and the role of Drosophila Trr and its human homologs, the MLL3 and MLL4/COMPASS-like complexes, as enhancer histone H3 lysine 4 (H3K4) monomethyltransferases functioning in enhancer-promoter communication. Recent genome-wide studies in the cataloging of somatic mutations in cancer have identified mutations in intergenic sequences encoding regulatory elements-and in MLL3 and MLL4 in both hematological malignancies and solid tumors. We propose that cancer-associated mutations in MLL3 and MLL4 exert their properties through the malfunction of Trr/MLL3/MLL4-dependent enhancers.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Neoplasias/genética , Animais , Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Neoplasias/metabolismo , Mutação Puntual , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Genes Dev ; 26(23): 2604-20, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23166019

RESUMO

Monomethylation of histone H3 on Lys 4 (H3K4me1) and acetylation of histone H3 on Lys 27 (H3K27ac) are histone modifications that are highly enriched over the body of actively transcribed genes and on enhancers. Although in yeast all H3K4 methylation patterns, including H3K4me1, are implemented by Set1/COMPASS (complex of proteins associated with Set1), there are three classes of COMPASS-like complexes in Drosophila that could carry out H3K4me1 on enhancers: dSet1, Trithorax, and Trithorax-related (Trr). Here, we report that Trr, the Drosophila homolog of the mammalian Mll3/4 COMPASS-like complexes, can function as a major H3K4 monomethyltransferase on enhancers in vivo. Loss of Trr results in a global decrease of H3K4me1 and H3K27ac levels in various tissues. Assays with the cut wing margin enhancer implied a functional role for Trr in enhancer-mediated processes. A genome-wide analysis demonstrated that Trr is required to maintain the H3K4me1 and H3K27ac chromatin signature that resembles the histone modification patterns described for enhancers. Furthermore, studies in the mammalian system suggested a role for the Trr homolog Mll3 in similar processes. Since Trr and mammalian Mll3/4 complexes are distinguished by bearing a unique subunit, the H3K27 demethylase UTX, we propose a model in which the H3K4 monomethyltransferases Trr/Mll3/Mll4 and the H3K27 demethylase UTX cooperate to regulate the transition from inactive/poised to active enhancers.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Estudo de Associação Genômica Ampla , Histona-Lisina N-Metiltransferase/genética , Metilação
6.
Bioessays ; 38(10): 1003-15, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27570183

RESUMO

Mutations in enhancer-associated chromatin-modifying components and genomic alterations in non-coding regions of the genome occur frequently in cancer, and other diseases pointing to the importance of enhancer fidelity to ensure proper tissue homeostasis. In this review, I will use specific examples to discuss how mutations in chromatin-modifying factors might affect enhancer activity of disease-relevant genes. I will then consider direct evidence from single nucleotide polymorphisms, small insertions, or deletions but also larger genomic rearrangements such as duplications, deletions, translocations, and inversions of specific enhancers to demonstrate how they have the ability to impact enhancer activity of disease genes including oncogenes and tumor suppressor genes. Considering that the scientific community only fairly recently has begun to focus its attention on "enhancer malfunction" in disease, I propose that multiple new enhancer-regulated and disease-relevant processes will be uncovered in the near future that will constitute the mechanistic basis for novel therapeutic avenues.


Assuntos
Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Mutação , Neoplasias/genética , Animais , Genes Neoplásicos , Humanos
7.
Genes Dev ; 24(9): 857-61, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20439426

RESUMO

Polycomb group proteins (PcG) are required for proper developmental regulation and cell fate commitment in metazoans. Recently, four studies reported the identification of JARID2, a JmjC domain-containing protein, as a component of the Polycomb-repressive complex 2 (PRC2), which is involved in implementing histone H3 Lys 27 methylation and transcriptional repression during development. Here, we discuss the implications of these studies for an improved understanding of PcG function in development.


Assuntos
Regulação da Expressão Gênica , Inativação Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Humanos , Camundongos
8.
Genes Dev ; 24(6): 574-89, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20203130

RESUMO

Epigenetic modifications of chromatin play an important role in the regulation of gene expression. KMT4/Dot1 is a conserved histone methyltransferase capable of methylating chromatin on Lys79 of histone H3 (H3K79). Here we report the identification of a multisubunit Dot1 complex (DotCom), which includes several of the mixed lineage leukemia (MLL) partners in leukemia such as ENL, AF9/MLLT3, AF17/MLLT6, and AF10/MLLT10, as well as the known Wnt pathway modifiers TRRAP, Skp1, and beta-catenin. We demonstrated that the human DotCom is indeed capable of trimethylating H3K79 and, given the association of beta-catenin, Skp1, and TRRAP, we investigated, and found, a role for Dot1 in Wnt/Wingless signaling in an in vivo model system. Knockdown of Dot1 in Drosophila results in decreased expression of a subset of Wingless target genes. Furthermore, the loss of expression for the Drosophila homologs of the Dot1-associated proteins involved in the regulation of H3K79 shows a similar reduction in expression of these Wingless targets. From yeast to human, specific trimethylation of H3K79 by Dot1 requires the monoubiquitination of histone H2B by the Rad6/Bre1 complex. Here, we demonstrate that depletion of Bre1, the E3 ligase required for H2B monoubiquitination, leads specifically to reduced bulk H3K79 trimethylation levels and a reduction in expression of many Wingless targets. Overall, our study describes for the first time the components of DotCom and links the specific regulation of H3K79 trimethylation by Dot1 and its associated factors to the Wnt/Wingless signaling pathway.


Assuntos
Histonas/metabolismo , Metiltransferases/metabolismo , Transdução de Sinais , Proteínas Wnt/metabolismo , Animais , Linhagem Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Histona-Lisina N-Metiltransferase , Humanos , Metilação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Development ; 140(5): 1014-23, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23364332

RESUMO

Adult stem cells reside in microenvironments called niches, where they are regulated by both extrinsic cues, such as signaling from neighboring cells, and intrinsic factors, such as chromatin structure. Here we report that in the Drosophila testis niche an H3K27me3-specific histone demethylase encoded by Ubiquitously transcribed tetratricopeptide repeat gene on the X chromosome (dUTX) maintains active transcription of the Suppressor of cytokine signaling at 36E (Socs36E) gene by removing the repressive H3K27me3 modification near its transcription start site. Socs36E encodes an inhibitor of the Janus kinase signal transducer and activator of transcription (JAK-STAT) signaling pathway. Whereas much is known about niche-to-stem cell signaling, such as the JAK-STAT signaling that is crucial for stem cell identity and activity, comparatively little is known about signaling from stem cells to the niche. Our results reveal that stem cells send feedback to niche cells to maintain the proper gene expression and architecture of the niche. We found that dUTX acts in cyst stem cells to maintain gene expression in hub cells through activating Socs36E transcription and preventing hyperactivation of JAK-STAT signaling. dUTX also acts in germline stem cells to maintain hub structure through regulating DE-Cadherin levels. Therefore, our findings provide new insights into how an epigenetic factor regulates crosstalk among different cell types within an endogenous stem cell niche, and shed light on the biological functions of a histone demethylase in vivo.


Assuntos
Proteínas de Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Janus Quinases/antagonistas & inibidores , Oxirredutases N-Desmetilantes/fisiologia , Fatores de Transcrição STAT/antagonistas & inibidores , Nicho de Células-Tronco/genética , Testículo/citologia , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Germinativas/citologia , Células Germinativas/metabolismo , Células Germinativas/fisiologia , Histona Desmetilases/fisiologia , Janus Quinases/metabolismo , Masculino , Modelos Biológicos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/genética , Nicho de Células-Tronco/fisiologia , Testículo/metabolismo , Testículo/fisiologia
11.
Proc Natl Acad Sci U S A ; 106(28): 11612-6, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19556538

RESUMO

Numerous studies focus on the tumor suppressor p53 as a protector of genomic stability, mediator of cell cycle arrest and apoptosis, and target of mutation in 50% of all human cancers. The vast majority of information on p53, its protein-interaction partners and regulation, comes from studies of tumor-derived, cultured cells where p53 and its regulatory controls may be mutated or dysfunctional. To address regulation of endogenous p53 in normal cells, we created a mouse and stem cell model by knock-in (KI) of a tandem-affinity-purification (TAP) epitope at the endogenous Trp-53 locus. Mass spectrometry of TAP-purified p53-complexes from embryonic stem cells revealed Tripartite-motif protein 24 (Trim24), a previously unknown partner of p53. Mutation of TRIM24 homolog, bonus, in Drosophila led to apoptosis, which could be rescued by p53-depletion. These in vivo analyses establish TRIM24/bonus as a pathway that negatively regulates p53 in Drosophila. The Trim24-p53 link is evolutionarily conserved, as TRIM24 depletion in human breast cancer cells caused p53-dependent, spontaneous apoptosis. We found that Trim24 ubiquitylates and negatively regulates p53 levels, suggesting Trim24 as a therapeutic target to restore tumor suppression by p53.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Cromatografia em Gel , Drosophila , Técnicas de Introdução de Genes , Humanos , Immunoblotting , Espectrometria de Massas , Camundongos , Mutação/genética , Proteína Supressora de Tumor p53/genética
12.
Life Sci Alliance ; 5(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34667079

RESUMO

DNA methylation at enhancers and CpG islands usually leads to gene repression, which is counteracted by DNA demethylation through the TET protein family. However, how TET enzymes are recruited and regulated at these genomic loci is not fully understood. Here, we identify TET2, the glycosyltransferase OGT and a previously undescribed proline and serine rich protein, PROSER1 as interactors of UTX, a component of the enhancer-associated MLL3/4 complexes. We find that PROSER1 mediates the interaction between OGT and TET2, thus promoting TET2 O-GlcNAcylation and protein stability. In addition, PROSER1, UTX, TET1/2, and OGT colocalize on many genomic elements genome-wide. Loss of PROSER1 results in lower enrichment of UTX, TET1/2, and OGT at enhancers and CpG islands, with a concomitant increase in DNA methylation and transcriptional down-regulation of associated target genes and increased DNA hypermethylation encroachment at H3K4me1-predisposed CpG islands. Furthermore, we provide evidence that PROSER1 acts as a more general regulator of OGT activity by controlling O-GlcNAcylation of multiple other chromatin signaling pathways. Taken together, this study describes for the first time a regulator of TET2 O-GlcNAcylation and its implications in mediating DNA demethylation at UTX-dependent enhancers and CpG islands and supports an important role for PROSER1 in regulating the function of various chromatin-associated proteins via OGT-mediated O-GlcNAcylation.


Assuntos
Ilhas de CpG , Desmetilação do DNA , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Elementos Facilitadores Genéticos , Histona Desmetilases/metabolismo , Animais , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Biologia Computacional/métodos , Técnicas de Silenciamento de Genes , Glicosilação , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Camundongos , Modelos Biológicos , Ligação Proteica , Transporte Proteico
13.
Life Sci Alliance ; 5(11)2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820704

RESUMO

The mitotic deacetylase complex MiDAC has recently been shown to play a vital physiological role in embryonic development and neurite outgrowth. However, how MiDAC functionally intersects with other chromatin-modifying regulators is poorly understood. Here, we describe a physical interaction between the histone H3K27 demethylase UTX, a complex-specific subunit of the enhancer-associated MLL3/4 complexes, and MiDAC. We demonstrate that UTX bridges the association of the MLL3/4 complexes and MiDAC by interacting with ELMSAN1, a scaffolding subunit of MiDAC. Our data suggest that MiDAC constitutes a negative genome-wide regulator of H4K20ac, an activity which is counteracted by the MLL3/4 complexes. MiDAC and the MLL3/4 complexes co-localize at many genomic regions, which are enriched for H4K20ac and the enhancer marks H3K4me1, H3K4me2, and H3K27ac. We find that MiDAC antagonizes the recruitment of UTX and MLL4 and negatively regulates H4K20ac, and to a lesser extent H3K4me2 and H3K27ac, resulting in transcriptional attenuation of associated genes. In summary, our findings provide a paradigm how the opposing roles of chromatin-modifying components, such as MiDAC and the MLL3/4 complexes, balance the transcriptional output of specific gene expression programs.


Assuntos
Elementos Facilitadores Genéticos , Histonas , Cromatina/genética , Elementos Facilitadores Genéticos/genética , Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo
14.
Elife ; 92020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32297854

RESUMO

The mitotic deacetylase complex (MiDAC) is a recently identified histone deacetylase (HDAC) complex. While other HDAC complexes have been implicated in neurogenesis, the physiological role of MiDAC remains unknown. Here, we show that MiDAC constitutes an important regulator of neural differentiation. We demonstrate that MiDAC functions as a modulator of a neurodevelopmental gene expression program and binds to important regulators of neurite outgrowth. MiDAC upregulates gene expression of pro-neural genes such as those encoding the secreted ligands SLIT3 and NETRIN1 (NTN1) by a mechanism suggestive of H4K20ac removal on promoters and enhancers. Conversely, MiDAC inhibits gene expression by reducing H3K27ac on promoter-proximal and -distal elements of negative regulators of neurogenesis. Furthermore, loss of MiDAC results in neurite outgrowth defects that can be rescued by supplementation with SLIT3 and/or NTN1. These findings indicate a crucial role for MiDAC in regulating the ligands of the SLIT3 and NTN1 signaling axes to ensure the proper integrity of neurite development.


Assuntos
Regulação da Expressão Gênica/fisiologia , Histona Desacetilases/metabolismo , Crescimento Neuronal/fisiologia , Animais , Diferenciação Celular/fisiologia , Metilação de DNA/fisiologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Netrina-1/metabolismo
15.
Biochem Soc Trans ; 37(Pt 1): 204-7, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19143632

RESUMO

Class E Vps (vacuolar protein sorting) proteins are components of the ESCRTs (endosomal sorting complexes required for transport) which are required for protein sorting at the early endosome. Most of these genes have been identified and genetically characterized in yeast. Recent genetic studies in Drosophila have revealed the phenotypic consequences of loss of vps function in multicellular organisms. In the present paper, we review these studies and discuss a mechanism which may explain how loss of the human Tsg101 (tumour susceptibility gene 101), a vps23 orthologue, causes tumours.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/genética , Endossomos/genética , Complexos Multiproteicos/genética , Neoplasias/genética , Fatores de Transcrição/metabolismo , Animais , Modelos Animais de Doenças , Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos/enzimologia , Humanos , Neoplasias/enzimologia , Neoplasias/patologia , Transporte Proteico
17.
Nat Genet ; 49(11): 1647-1653, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28967912

RESUMO

Histone H3 lysine 4 monomethylation (H3K4me1) is an evolutionarily conserved feature of enhancer chromatin catalyzed by the COMPASS-like methyltransferase family, which includes Trr in Drosophila melanogaster and MLL3 (encoded by KMT2C) and MLL4 (encoded by KMT2D) in mammals. Here we demonstrate that Drosophila embryos expressing catalytically deficient Trr eclose and develop to productive adulthood. Parallel experiments with a trr allele that augments enzyme product specificity show that conversion of H3K4me1 at enhancers to H3K4me2 and H3K4me3 is also compatible with life and results in minimal changes in gene expression. Similarly, loss of the catalytic SET domains of MLL3 and MLL4 in mouse embryonic stem cells (mESCs) does not disrupt self-renewal. Drosophila embryos with trr alleles encoding catalytic mutants manifest subtle developmental abnormalities when subjected to temperature stress or altered cohesin levels. Collectively, our findings suggest that animal development can occur in the context of Trr or mammalian COMPASS-like proteins deficient in H3K4 monomethylation activity and point to a possible role for H3K4me1 on cis-regulatory elements in specific settings to fine-tune transcriptional regulation in response to environmental stress.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Sistemas CRISPR-Cas , Cromatina/química , Cromatina/metabolismo , Proteínas de Drosophila/deficiência , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Metilação , Camundongos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Células Sf9 , Spodoptera
18.
Science ; 345(6200): 1065-70, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25170156

RESUMO

Histone H3 lysine(27)-to-methionine (H3K27M) gain-of-function mutations occur in highly aggressive pediatric gliomas. We established a Drosophila animal model for the pathogenic histone H3K27M mutation and show that its overexpression resembles polycomb repressive complex 2 (PRC2) loss-of-function phenotypes, causing derepression of PRC2 target genes and developmental perturbations. Similarly, an H3K9M mutant depletes H3K9 methylation levels and suppresses position-effect variegation in various Drosophila tissues. The histone H3K9 demethylase KDM3B/JHDM2 associates with H3K9M-containing nucleosomes, and its misregulation in Drosophila results in changes of H3K9 methylation levels and heterochromatic silencing defects. We have established histone lysine-to-methionine mutants as robust in vivo tools for inhibiting methylation pathways that also function as biochemical reagents for capturing site-specific histone-modifying enzymes, thus providing molecular insight into chromatin signaling pathways.


Assuntos
Cromatina/metabolismo , Histonas/genética , Lisina/genética , Metionina/genética , Substituição de Aminoácidos , Animais , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Drosophila melanogaster , Inativação Gênica , Glioma/genética , Glioma/metabolismo , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Metilação , Mutação , Transdução de Sinais
19.
Mol Cell Biol ; 33(23): 4745-54, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24081332

RESUMO

Histone H3 lysine 4 (H3K4) can be mono-, di-, and trimethylated by members of the COMPASS (complex of proteins associated with Set1) family from Saccharomyces cerevisiae to humans, and these modifications can be found at distinct regions of the genome. Monomethylation of histone H3K4 (H3K4me1) is relatively more enriched at metazoan enhancer regions compared to trimethylated histone H3K4 (H3K4me3), which is enriched at transcription start sites in all eukaryotes. Our recent studies of Drosophila melanogaster demonstrated that the Trithorax-related (Trr) branch of the COMPASS family regulates enhancer activity and is responsible for the implementation of H3K4me1 at these regions. There are six COMPASS family members in mammals, two of which, MLL3 (GeneID 58508) and MLL4 (GeneID 8085), are most closely related to Drosophila Trr. Here, we use chromatin immunoprecipitation-sequencing (ChIP-seq) of this class of COMPASS family members in both human HCT116 cells and mouse embryonic stem cells and find that MLL4 is preferentially found at enhancer regions. MLL3 and MLL4 are frequently mutated in cancer, and indeed, the widely used HCT116 cancer cell line contains inactivating mutations in the MLL3 gene. Using HCT116 cells in which MLL4 has also been knocked out, we demonstrate that MLL3 and MLL4 are major regulators of H3K4me1 in these cells, with the greatest loss of monomethylation at enhancer regions. Moreover, we find a redundant role between Mll3 (GeneID 231051) and Mll4 (GeneID 381022) in enhancer H3K4 monomethylation in mouse embryonic fibroblast (MEF) cells. These findings suggest that mammalian MLL3 and MLL4 function in the regulation of enhancer activity and that mutations of MLL3 and MLL4 that are found in cancers could exert their properties through malfunction of these Trr/MLL3/MLL4-specific (Trrific) enhancers.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Elementos Facilitadores Genéticos , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Epigênese Genética , Expressão Gênica , Células HCT116 , Histona-Lisina N-Metiltransferase , Humanos , Metilação , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Transporte Proteico
20.
Mol Cell Biol ; 32(9): 1683-93, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22354997

RESUMO

Jarid2 was recently identified as an important component of the mammalian Polycomb repressive complex 2 (PRC2), where it has a major effect on PRC2 recruitment in mouse embryonic stem cells. Although Jarid2 is conserved in Drosophila, it has not previously been implicated in Polycomb (Pc) regulation. Therefore, we purified Drosophila Jarid2 and its associated proteins and found that Jarid2 associates with all of the known canonical PRC2 components, demonstrating a conserved physical interaction with PRC2 in flies and mammals. Furthermore, in vivo studies with Jarid2 mutants in flies demonstrate that among several histone modifications tested, only methylation of histone 3 at K27 (H3K27), the mark implemented by PRC2, was affected. Genome-wide profiling of Jarid2, Su(z)12 (Suppressor of zeste 12), and H3K27me3 occupancy by chromatin immunoprecipitation with sequencing (ChIP-seq) indicates that Jarid2 and Su(z)12 have very similar distribution patterns on chromatin. However, Jarid2 and Su(z)12 occupancy levels at some genes are significantly different, with Jarid2 being present at relatively low levels at many Pc response elements (PREs) of certain Homeobox (Hox) genes, providing a rationale for why Jarid2 was never identified in Pc screens. Gene expression analyses show that Jarid2 and E(z) (Enhancer of zeste, a canonical PRC2 component) are not only required for transcriptional repression but might also function in active transcription. Identification of Jarid2 as a conserved PRC2 interactor in flies provides an opportunity to begin to probe some of its novel functions in Drosophila development.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Metilação , Ligação Proteica , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa