Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(18): e2318666121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652747

RESUMO

In bacteria, intracellular K+ is involved in the regulation of membrane potential, cytosolic pH, and cell turgor as well as in spore germination, environmental adaptation, cell-to-cell communication in biofilms, antibiotic sensitivity, and infectivity. The second messenger cyclic-di-AMP (c-di-AMP) has a central role in modulating the intracellular K+ concentration in many bacterial species, controlling transcription and function of K+ channels and transporters. However, our understanding of how this regulatory network responds to c-di-AMP remains poor. We used the RCK (Regulator of Conductance of K+) proteins that control the activity of Ktr channels in Bacillus subtilis as a model system to analyze the regulatory function of c-di-AMP with a combination of in vivo and in vitro functional and structural characterization. We determined that the two RCK proteins (KtrA and KtrC) are neither physiologically redundant or functionally equivalent. KtrC is the physiologically dominant RCK protein in the regulation of Ktr channel activity. In explaining this hierarchical organization, we found that, unlike KtrA, KtrC is very sensitive to c-di-AMP inactivation and lack of c-di-AMP regulation results in RCK protein toxicity, most likely due to unregulated K+ flux. We also found that KtrC can assemble with KtrA, conferring c-di-AMP regulation to the functional KtrA/KtrC heteromers and potentially compensating KtrA toxicity. Altogether, we propose that the central role of c-di-AMP in the control of the K+ machinery, by modulating protein levels through gene transcription and by regulating protein activity, has determined the evolutionary selection of KtrC as the dominant RCK protein, shaping the hierarchical organization of regulatory components of the K+ machinery.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Potássio/metabolismo , Regulação Bacteriana da Expressão Gênica , Fosfatos de Dinucleosídeos/metabolismo , Canais de Potássio/metabolismo , Canais de Potássio/genética
2.
J Bacteriol ; 206(7): e0019024, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38832794

RESUMO

Cyclic di-adenosine monophosphate (c-di-AMP) is a second messenger involved in diverse metabolic processes including osmolyte uptake, cell wall homeostasis, as well as antibiotic and heat resistance. This study investigates the role of the c-di-AMP receptor protein DarA in the osmotic stress response in Bacillus subtilis. Through a series of experiments, we demonstrate that DarA plays a central role in the cellular response to osmotic fluctuations. Our findings show that DarA becomes essential under extreme potassium limitation as well as upon salt stress, highlighting its significance in mediating osmotic stress adaptation. Suppressor screens with darA mutants reveal compensatory mechanisms involving the accumulation of osmoprotectants, particularly potassium and citrulline. Mutations affecting various metabolic pathways, including the citric acid cycle as well as glutamate and arginine biosynthesis, indicate a complex interplay between the osmotic stress response and metabolic regulation. In addition, the growth defects of the darA mutant during potassium starvation and salt stress in a strain lacking the high-affinity potassium uptake systems KimA and KtrAB can be rescued by increased affinity of the remaining potassium channel KtrCD or by increased expression of ktrD, thus resulting in increased potassium uptake. Finally, the darA mutant can respond to salt stress by the increased expression of MleN , which can export sodium ions.IMPORTANCEEnvironmental bacteria are exposed to rapidly changing osmotic conditions making an effective adaptation to these changes crucial for the survival of the cells. In Gram-positive bacteria, the second messenger cyclic di-AMP plays a key role in this adaptation by controlling (i) the influx of physiologically compatible organic osmolytes and (ii) the biosynthesis of such osmolytes. In several bacteria, cyclic di-adenosine monophosphate (c-di-AMP) can bind to a signal transduction protein, called DarA, in Bacillus subtilis. So far, no function for DarA has been discovered in any organism. We have identified osmotically challenging conditions that make DarA essential and have identified suppressor mutations that help the bacteria to adapt to those conditions. Our results indicate that DarA is a central component in the integration of osmotic stress with the synthesis of compatible amino acid osmolytes and with the homeostasis of potassium, the first response to osmotic stress.


Assuntos
Aminoácidos , Bacillus subtilis , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Homeostase , Pressão Osmótica , Potássio , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Potássio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Aminoácidos/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Mutação
3.
J Biol Chem ; 299(7): 104944, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37343703

RESUMO

The Gram-positive bacterium Bacillus subtilis can utilize several proteinogenic and non-proteinogenic amino acids as sources of carbon, nitrogen, and energy. The utilization of the amino acids arginine, citrulline, and ornithine is catalyzed by enzymes encoded in the rocABC and rocDEF operons and by the rocG gene. The expression of these genes is controlled by the alternative sigma factor SigL. RNA polymerase associated with this sigma factor depends on ATP-hydrolyzing transcription activators to initiate transcription. The RocR protein acts as a transcription activator for the roc genes. However, the details of amino acid metabolism via this pathway are unknown. Here, we investigated the contributions of all enzymes of the Roc pathway to the degradation of arginine, citrulline, and ornithine. We identified the previously uncharacterized RocB protein as responsible for the conversion of citrulline to ornithine. In vitro assays with the purified enzyme suggest that RocB acts as a manganese-dependent N-carbamoyl-L-ornithine hydrolase that cleaves citrulline to form ornithine and carbamate. Moreover, the molecular effector that triggers transcription activation by RocR has not been unequivocally identified. Using a combination of transcription reporter assays and biochemical experiments, we demonstrate that ornithine is the molecular inducer of RocR activity. Taken together, our work suggests that binding of ATP to RocR triggers its hexamerization, and binding of ornithine then allows ATP hydrolysis and activation of roc gene transcription. Thus, ornithine is the central molecule of the roc degradative pathway as it is the common intermediate of arginine and citrulline degradation and the molecular effector of RocR.


Assuntos
Arginina , Bacillus subtilis , Ornitina , Fator sigma , Trifosfato de Adenosina/metabolismo , Arginina/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citrulina/metabolismo , Ornitina/metabolismo , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo
4.
PLoS Genet ; 17(1): e1009092, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33481774

RESUMO

In order to adjust to changing environmental conditions, bacteria use nucleotide second messengers to transduce external signals and translate them into a specific cellular response. Cyclic di-adenosine monophosphate (c-di-AMP) is the only known essential nucleotide second messenger. In addition to the well-established role of this second messenger in the control of potassium homeostasis, we observed that glutamate is as toxic as potassium for a c-di-AMP-free strain of the Gram-positive model bacterium Bacillus subtilis. In this work, we isolated suppressor mutants that allow growth of a c-di-AMP-free strain under these toxic conditions. Characterization of glutamate resistant suppressors revealed that they contain pairs of mutations, in most cases affecting glutamate and potassium homeostasis. Among these mutations, several independent mutations affected a novel glutamate transporter, AimA (Amino acid importer A, formerly YbeC). This protein is the major transporter for glutamate and serine in B. subtilis. Unexpectedly, some of the isolated suppressor mutants could suppress glutamate toxicity by a combination of mutations that affect phospholipid biosynthesis and a specific gain-of-function mutation of a mechanosensitive channel of small conductance (YfkC) resulting in the acquisition of a device for glutamate export. Cultivation of the c-di-AMP-free strain on complex medium was an even greater challenge because the amounts of potassium, glutamate, and other osmolytes are substantially higher than in minimal medium. Suppressor mutants viable on complex medium could only be isolated under anaerobic conditions if one of the two c-di-AMP receptor proteins, DarA or DarB, was absent. Also on complex medium, potassium and osmolyte toxicity are the major bottlenecks for the growth of B. subtilis in the absence of c-di-AMP. Our results indicate that the essentiality of c-di-AMP in B. subtilis is caused by the global impact of the second messenger nucleotide on different aspects of cellular physiology.


Assuntos
Bacillus subtilis/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Ácido Glutâmico/metabolismo , Potássio/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , AMP Cíclico/genética , AMP Cíclico/metabolismo , Fosfatos de Dinucleosídeos/genética , Regulação Bacteriana da Expressão Gênica/genética , Ácido Glutâmico/genética , Homeostase/genética , Transporte de Íons/genética , Mutação/genética , Sistemas do Segundo Mensageiro/genética
5.
J Bacteriol ; 202(12)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32253343

RESUMO

Potassium and glutamate are the major cation and anion, respectively, in every living cell. Due to the high concentrations of both ions, the cytoplasm of all cells can be regarded as a potassium glutamate solution. This implies that the concentrations of both ions need to be balanced. While the control of potassium uptake by glutamate is well established for eukaryotic cells, much less is known about the mechanisms that link potassium homeostasis to glutamate availability in bacteria. Here, we have discovered that the availability of glutamate strongly decreases the minimal external potassium concentration required for the highly abundant Bacillus subtilis potassium channel KtrCD to accumulate potassium. In contrast, the inducible KtrAB and KimA potassium uptake systems have high apparent affinities for potassium even in the absence of glutamate. Experiments with mutant strains revealed that the KtrD subunit responds to the presence of glutamate. For full activity, KtrD synergistically requires the presence of the regulatory subunit KtrC and of glutamate. The analysis of suppressor mutants of a strain that has KtrCD as the only potassium uptake system and that experiences severe potassium starvation identified a mutation in the ion selectivity filter of KtrD (Gly282 to Val) that similarly results in a strongly glutamate-independent increase of the apparent affinity for potassium. Thus, this work has identified two conditions that increase the apparent affinity of KtrCD for potassium, i.e., external glutamate and the acquisition of a single point mutation in KtrD.IMPORTANCE In each living cell, potassium is required for maintaining the intracellular pH and for the activity of essential enzymes. Like most other bacteria, Bacillus subtilis possesses multiple low- and high-affinity potassium uptake systems. Their activity is regulated by the second messenger cyclic di-AMP. Moreover, the pools of the most abundant ions potassium and glutamate must be balanced. We report two conditions under which the low-affinity potassium channel KtrCD is able to mediate potassium uptake at low external potassium concentrations: physiologically, the presence of glutamate results in a severely increased potassium uptake. Moreover, this is achieved by a mutation affecting the selectivity filter of the KtrD channel. These results highlight the integration between potassium and glutamate homeostasis in bacteria.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Ácido Glutâmico/metabolismo , Canais de Potássio/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Transporte Biológico , Regulação Bacteriana da Expressão Gênica , Ácido Glutâmico/química , Cinética , Potássio/química , Potássio/metabolismo , Canais de Potássio/química , Canais de Potássio/genética
6.
J Biol Chem ; 294(24): 9605-9614, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31061098

RESUMO

The signaling nucleotide cyclic di-AMP (c-di-AMP) is the only known essential second messenger in bacteria. Recently, c-di-AMP has been identified as being essential for controlling potassium uptake in the model organism Bacillus subtilis and several other bacteria. A B. subtilis strain lacking c-di-AMP is not viable at high potassium concentrations, unless the bacteria acquire suppressor mutations. In this study, we isolated such suppressor mutants and found mutations that reduced the activities of the potassium transporters KtrCD and KimA. Although c-di-AMP-mediated control of KtrCD has previously been demonstrated, it is unknown how c-di-AMP affects KimA activity. Using the DRaCALA screening assay, we tested for any interactions of KimA and other potential target proteins in B. subtilis with c-di-AMP. This assay identified KimA, as well as the K+/H+ antiporter KhtT, the potassium exporter CpaA (YjbQ), the osmoprotectant transporter subunit OpuCA, the primary Mg2+ importer MgtE, and DarB (YkuL), a protein of unknown function, as bona fide c-di-AMP-binding proteins. Further, binding of c-di-AMP to KimA inhibited potassium uptake. Our results indicate that c-di-AMP controls KimA-mediated potassium transport at both kimA gene expression and KimA activity levels. Moreover, the discovery that potassium exporters are c-di-AMP targets indicates that this second messenger controls potassium homeostasis in B. subtilis at a global level by binding to riboswitches and to different classes of transport proteins involved in potassium uptake and export.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Homeostase , Potássio/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Mutação
7.
J Biol Chem ; 290(5): 3069-80, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25433025

RESUMO

The cyclic dimeric AMP nucleotide c-di-AMP is an essential second messenger in Bacillus subtilis. We have identified the protein DarA as one of the prominent c-di-AMP receptors in B. subtilis. Crystal structure analysis shows that DarA is highly homologous to PII signal transducer proteins. In contrast to PII proteins, the functionally important B- and T-loops are swapped with respect to their size. DarA is a homotrimer that binds three molecules of c-di-AMP, each in a pocket located between two subunits. We demonstrate that DarA is capable to bind c-di-AMP and with lower affinity cyclic GMP-AMP (3'3'-cGAMP) but not c-di-GMP or 2'3'-cGAMP. Consistently the crystal structure shows that within the ligand-binding pocket only one adenine is highly specifically recognized, whereas the pocket for the other adenine appears to be promiscuous. Comparison with a homologous ligand-free DarA structure reveals that c-di-AMP binding is accompanied by conformational changes of both the fold and the position of the B-loop in DarA.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Bacillus subtilis/metabolismo , Cristalografia por Raios X , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transdução de Sinais
8.
J Bacteriol ; 197(20): 3265-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26240071

RESUMO

UNLABELLED: Gram-positive bacteria synthesize the second messenger cyclic di-AMP (c-di-AMP) to control cell wall and potassium homeostasis and to secure the integrity of their DNA. In the firmicutes, c-di-AMP is essential for growth. The model organism Bacillus subtilis encodes three diadenylate cyclases and two potential phosphodiesterases to produce and degrade c-di-AMP, respectively. Among the three cyclases, CdaA is conserved in nearly all firmicutes, and this enzyme seems to be responsible for the c-di-AMP that is required for cell wall homeostasis. Here, we demonstrate that CdaA localizes to the membrane and forms a complex with the regulatory protein CdaR and the glucosamine-6-phosphate mutase GlmM. Interestingly, cdaA, cdaR, and glmM form a gene cluster that is conserved throughout the firmicutes. This conserved arrangement and the observed interaction between the three proteins suggest a functional relationship. Our data suggest that GlmM and GlmS are involved in the control of c-di-AMP synthesis. These enzymes convert glutamine and fructose-6-phosphate to glutamate and glucosamine-1-phosphate. c-di-AMP synthesis is enhanced if the cells are grown in the presence of glutamate compared to that in glutamine-grown cells. Thus, the quality of the nitrogen source is an important signal for c-di-AMP production. In the analysis of c-di-AMP-degrading phosphodiesterases, we observed that both phosphodiesterases, GdpP and PgpH (previously known as YqfF), contribute to the degradation of the second messenger. Accumulation of c-di-AMP in a gdpP pgpH double mutant is toxic for the cells, and the cells respond to this accumulation by inactivation of the diadenylate cyclase CdaA. IMPORTANCE: Bacteria use second messengers for signal transduction. Cyclic di-AMP (c-di-AMP) is the only second messenger known so far that is essential for a large group of bacteria. We have studied the regulation of c-di-AMP synthesis and the role of the phosphodiesterases that degrade this second messenger. c-di-AMP synthesis strongly depends on the nitrogen source: glutamate-grown cells produce more c-di-AMP than glutamine-grown cells. The accumulation of c-di-AMP in a strain lacking both phosphodiesterases is toxic and results in inactivation of the diadenylate cyclase CdaA. Our results suggest that CdaA is the critical diadenylate cyclase that produces the c-di-AMP that is both essential and toxic upon accumulation.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Diester Fosfórico Hidrolases/metabolismo , Proteínas de Bactérias/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Mutação , Diester Fosfórico Hidrolases/genética , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Transdução de Sinais/fisiologia
9.
J Biol Chem ; 289(30): 21098-107, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24939848

RESUMO

The Gram-positive bacterium Bacillus subtilis encodes three diadenylate cyclases that synthesize the essential signaling nucleotide cyclic di-AMP. The activities of the vegetative enzymes DisA and CdaA are controlled by protein-protein interactions with their conserved partner proteins. Here, we have analyzed the regulation of the unique sporulation-specific diadenylate cyclase CdaS. Very low expression of CdaS as the single diadenylate cyclase resulted in the appearance of spontaneous suppressor mutations. Several of these mutations in the cdaS gene affected the N-terminal domain of CdaS. The corresponding CdaS mutant proteins exhibited a significantly increased enzymatic activity. The N-terminal domain of CdaS consists of two α-helices and is attached to the C-terminal catalytically active diadenylate cyclase (DAC) domain. Deletion of the first or both helices resulted also in strongly increased activity indicating that the N-terminal domain serves to limit the enzyme activity of the DAC domain. The structure of YojJ, a protein highly similar to CdaS, indicates that the protein forms hexamers that are incompatible with enzymatic activity of the DAC domains. In contrast, the mutations and the deletions of the N-terminal domain result in conformational changes that lead to highly increased enzymatic activity. Although the full-length CdaS protein was found to form hexamers, a truncated version with a deletion of the first N-terminal helix formed dimers with high enzyme activity. To assess the role of CdaS in sporulation, we assayed the germination of wild type and cdaS mutant spores. The results indicate that cyclic di-AMP formed by CdaS is required for efficient germination.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias , Fosfatos de Dinucleosídeos , Fósforo-Oxigênio Liases , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfatos de Dinucleosídeos/química , Fosfatos de Dinucleosídeos/genética , Fosfatos de Dinucleosídeos/metabolismo , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
10.
J Bacteriol ; 196(2): 265-75, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24163345

RESUMO

Bacillus subtilis mutants lacking ymdB are unable to form biofilms, exhibit a strong overexpression of the flagellin gene hag, and are deficient in SlrR, a SinR antagonist. Here, we report the functional and structural characterization of YmdB, and we find that YmdB is a phosphodiesterase with activity against 2',3'- and 3',5'-cyclic nucleotide monophosphates. The structure of YmdB reveals that the enzyme adopts a conserved phosphodiesterase fold with a binuclear metal center. Mutagenesis of a catalytically crucial residue demonstrates that the enzymatic activity of YmdB is essential for biofilm formation. The deletion of ymdB affects the expression of more than 800 genes; the levels of the σ(D)-dependent motility regulon and several sporulation genes are increased, and the levels of the SinR-repressed biofilm genes are decreased, confirming the role of YmdB in regulating late adaptive responses of B. subtilis.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/metabolismo , Bacillus subtilis/fisiologia , Biofilmes/crescimento & desenvolvimento , Cristalografia por Raios X , Análise Mutacional de DNA , Deleção de Genes , Modelos Moleculares , Conformação Proteica
11.
J Biol Chem ; 288(3): 2004-17, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23192352

RESUMO

The genome of the Gram-positive soil bacterium Bacillus subtilis encodes three potential diadenylate cyclases that may synthesize the signaling nucleotide cyclic di-AMP (c-di-AMP). These enzymes are expressed under different conditions in different cell compartments, and they localize to distinct positions in the cell. Here we demonstrate the diadenylate cyclase activity of the so far uncharacterized enzymes CdaA (previously known as YbbP) and CdaS (YojJ). Our work confirms that c-di-AMP is essential for the growth of B. subtilis and shows that an excess of the molecule is also harmful for the bacteria. Several lines of evidence suggest that the diadenylate cyclase CdaA is part of the conserved essential cda-glm module involved in cell wall metabolism. In contrast, the CdaS enzyme seems to provide c-di-AMP for spores. Accumulation of large amounts of c-di-AMP impairs the growth of B. subtilis and results in the formation of aberrant curly cells. This phenotype can be partially suppressed by elevated concentrations of magnesium. These observations suggest that c-di-AMP interferes with the peptidoglycan synthesis machinery. The activity of the diadenylate cyclases is controlled by distinct molecular mechanisms. CdaA is stimulated by a regulatory interaction with the CdaR (YbbR) protein. In contrast, the activity of CdaS seems to be intrinsically restricted, and a single amino acid substitution is sufficient to drastically increase the activity of the enzyme. Taken together, our results support the idea of an important role for c-di-AMP in B. subtilis and suggest that the levels of the nucleotide have to be tightly controlled.


Assuntos
Bacillus subtilis/metabolismo , Parede Celular/metabolismo , Fosfatos de Dinucleosídeos/metabolismo , Genoma Bacteriano , Fósforo-Oxigênio Liases/metabolismo , Esporos Bacterianos/metabolismo , Bacillus subtilis/genética , Parede Celular/genética , Escherichia coli/genética , Homeostase , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Magnésio/metabolismo , Modelos Moleculares , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Esporos Bacterianos/genética
12.
mBio ; 15(4): e0345623, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38470260

RESUMO

The Gram-positive model bacterium Bacillus subtilis can acquire amino acids by import, de novo biosynthesis, or degradation of proteins and peptides. The accumulation of several amino acids inhibits the growth of B. subtilis, probably due to misincorporation into cellular macromolecules such as proteins or peptidoglycan or due to interference with other amino acid biosynthetic pathways. Here, we studied the adaptation of B. subtilis to toxic concentrations of the three-carbon amino acids L-alanine, ß-alanine, and 2,3-diaminopropionic acid, as well as the two-carbon amino acid glycine. Resistance to the non-proteinogenic amino acid ß-alanine, which is a precursor for coenzyme A biosynthesis, is achieved by mutations that either activate a cryptic amino acid exporter, AexA (previously YdeD), or inactivate the amino acid importers AimA, AimB (previously YbxG), and BcaP. The aexA gene is very poorly expressed under most conditions studied. However, mutations affecting the transcription factor AerA (previously YdeC) can result in strong constitutive aexA expression. AexA is the first characterized member of a group of amino acid exporters in B. subtilis, which are all very poorly expressed. Therefore, we suggest to call this group "sleeping beauty amino acid exporters." 2,3-Diaminopropionic acid can also be exported by AexA, and this amino acid also seems to be a natural substrate of AerA/AexA, as it can cause a slight but significant induction of aexA expression, and AexA also provides some natural resistance toward 2,3-diaminopropionic acid. Moreover, our work shows how low-specificity amino acid transporters contribute to amino acid homeostasis in B. subtilis.IMPORTANCEEven though Bacillus subtilis is one of the most-studied bacteria, amino acid homeostasis in this organism is not fully understood. We have identified import and export systems for the C2 and C3 amino acids. Our work demonstrates that the responsible amino acid permeases contribute in a rather promiscuitive way to amino acid uptake. In addition, we have discovered AexA, the first member of a group of very poorly expressed amino acid exporters in B. subtilis that we call "sleeping beauty amino acid exporters." The expression of these transporters is typically triggered by mutations in corresponding regulator genes that are acquired upon exposure to toxic amino acids. These exporters are ubiquitous in all domains of life. It is tempting to speculate that many of them are not expressed until the cells experience selective pressure by toxic compounds, and they protect the cells from rare but potentially dangerous encounters with such compounds.


Assuntos
Aminoácidos , Bacillus subtilis , Aminoácidos/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Homeostase , Sistemas de Transporte de Aminoácidos , beta-Alanina/metabolismo
13.
Microlife ; 4: uqad043, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954098

RESUMO

The dinucleotide cyclic di-AMP (c-di-AMP) is synthesized as a second messenger in the Gram-positive model bacterium Bacillus subtilis as well as in many bacteria and archaea. Bacillus subtilis possesses three diadenylate cyclases and two phosphodiesterases that synthesize and degrade the molecule, respectively. Among the second messengers, c-di-AMP is unique since it is essential for B. subtilis on the one hand but toxic upon accumulation on the other. This role as an "essential poison" is related to the function of c-di-AMP in the control of potassium homeostasis. C-di-AMP inhibits the expression and activity of potassium uptake systems by binding to riboswitches and transporters and activates the activity of potassium exporters. In this way, c-di-AMP allows the adjustment of uptake and export systems to achieve a balanced intracellular potassium concentration. C-di-AMP also binds to two dedicated signal transduction proteins, DarA and DarB. Both proteins seem to interact with other proteins in their apo state, i.e. in the absence of c-di-AMP. For DarB, the (p)ppGpp synthetase/hydrolase Rel and the pyruvate carboxylase PycA have been identified as targets. The interactions trigger the synthesis of the alarmone (p)ppGpp and of the acceptor molecule for the citric acid cycle, oxaloacetate, respectively. In the absence of c-di-AMP, many amino acids inhibit the growth of B. subtilis. This feature can be used to identify novel players in amino acid homeostasis. In this review, we discuss the different functions of c-di-AMP and their physiological relevance.

14.
J Bacteriol ; 194(5): 1036-44, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22178973

RESUMO

Common laboratory strains of Bacillus subtilis encode two glutamate dehydrogenases: the enzymatically active protein RocG and the cryptic enzyme GudB that is inactive due to a duplication of three amino acids in its active center. The inactivation of the rocG gene results in poor growth of the bacteria on complex media due to the accumulation of toxic intermediates. Therefore, rocG mutants readily acquire suppressor mutations that decryptify the gudB gene. This decryptification occurs by a precise deletion of one part of the 9-bp direct repeat that causes the amino acid duplication. This mutation occurs at the extremely high frequency of 10(-4). Mutations affecting the integrity of the direct repeat result in a strong reduction of the mutation frequency; however, the actual sequence of the repeat is not essential. The mutation frequency of gudB was not affected by the position of the gene on the chromosome. When the direct repeat was placed in the completely different context of an artificial promoter, the precise deletion of one part of the repeat was also observed, but the mutation frequency was reduced by 3 orders of magnitude. Thus, transcription of the gudB gene seems to be essential for the high frequency of the appearance of the gudB1 mutation. This idea is supported by the finding that the transcription-repair coupling factor Mfd is required for the decryptification of gudB. The Mfd-mediated coupling of transcription to mutagenesis might be a built-in precaution that facilitates the accumulation of mutations preferentially in transcribed genes.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Glutamato Desidrogenase/metabolismo , Mutação , Pseudogenes , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Glutamato Desidrogenase/genética , Sequências Repetitivas de Ácido Nucleico , Supressão Genética , Fatores de Transcrição/genética , Transcrição Gênica
15.
Mol Microbiol ; 81(6): 1459-73, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21815947

RESUMO

RNA processing and degradation is initiated by endonucleolytic cleavage of the target RNAs. In many bacteria, this activity is performed by RNase E which is not present in Bacillus subtilis and other Gram-positive bacteria. Recently, the essential endoribonuclease RNase Y has been discovered in B. subtilis. This RNase is involved in the degradation of bulk mRNA suggesting a major role in RNA metabolism. However, only a few targets of RNase Y have been identified so far. In order to assess the global impact of RNase Y, we compared the transcriptomes in response to the expression level of RNase Y. Our results demonstrate that processing by RNase Y results in accumulation of about 550 mRNAs. Some of these targets were substantially stabilized by RNase Y depletion, resulting in half-lives in the range of an hour. Moreover, about 350 mRNAs were less abundant when RNase Y was depleted among them the mRNAs of the operons required for biofilm formation. Interestingly, overexpression of RNase Y was sufficient to induce biofilm formation. The results presented in this work emphasize the importance of RNase Y as the global acting endoribonuclease for B. subtilis.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Regulação Bacteriana da Expressão Gênica , Processamento Pós-Transcricional do RNA , Ribonucleases/metabolismo , Perfilação da Expressão Gênica , Estabilidade de RNA , Especificidade por Substrato
16.
J Bacteriol ; 193(19): 5431-41, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21803996

RESUMO

The control of mRNA stability is an important component of regulation in bacteria. Processing and degradation of mRNAs are initiated by an endonucleolytic attack, and the cleavage products are processively degraded by exoribonucleases. In many bacteria, these RNases, as well as RNA helicases and other proteins, are organized in a protein complex called the RNA degradosome. In Escherichia coli, the RNA degradosome is assembled around the essential endoribonuclease E. In Bacillus subtilis, the recently discovered essential endoribonuclease RNase Y is involved in the initiation of RNA degradation. Moreover, RNase Y interacts with other RNases, the RNA helicase CshA, and the glycolytic enzymes enolase and phosphofructokinase in a degradosome-like complex. In this work, we have studied the domain organization of RNase Y and the contribution of the domains to protein-protein interactions. We provide evidence for the physical interaction between RNase Y and the degradosome partners in vivo. We present experimental and bioinformatic data which indicate that the RNase Y contains significant regions of intrinsic disorder and discuss the possible functional implications of this finding. The localization of RNase Y in the membrane is essential both for the viability of B. subtilis and for all interactions that involve RNase Y. The results presented in this study provide novel evidence for the idea that RNase Y is the functional equivalent of RNase E, even though the two enzymes do not share any sequence similarity.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Endorribonucleases/química , Endorribonucleases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Biologia Computacional , Endorribonucleases/genética , Escherichia coli/enzimologia , Dados de Sequência Molecular , Complexos Multienzimáticos/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Ligação Proteica/genética , Estrutura Terciária de Proteína , RNA Helicases/metabolismo , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
17.
J Bacteriol ; 193(21): 5997-6007, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21856853

RESUMO

Cells of Bacillus subtilis can either be motile or sessile, depending on the expression of mutually exclusive sets of genes that are required for flagellum or biofilm formation, respectively. Both activities are coordinated by the master regulator SinR. We have analyzed the role of the previously uncharacterized ymdB gene for bistable gene expression in B. subtilis. We observed a strong overexpression of the hag gene encoding flagellin and of other genes of the σ(D)-dependent motility regulon in the ymdB mutant, whereas the two major operons for biofilm formation, tapA-sipW-tasA and epsA-O, were not expressed. As a result, the ymdB mutant is unable to form biofilms. An analysis of the individual cells of a population revealed that the ymdB mutant no longer exhibited bistable behavior; instead, all cells are short and motile. The inability of the ymdB mutant to form biofilms is suppressed by the deletion of the sinR gene encoding the master regulator of biofilm formation, indicating that SinR-dependent repression of biofilm genes cannot be relieved in a ymdB mutant. Our studies demonstrate that lack of expression of SlrR, an antagonist of SinR, is responsible for the observed phenotypes. Overexpression of SlrR suppresses the effects of a ymdB mutation.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Flagelina/metabolismo , Regulação Bacteriana da Expressão Gênica , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Deleção de Genes , Perfilação da Expressão Gênica , Óperon , Regulon
18.
Mol Microbiol ; 77(4): 958-71, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20572937

RESUMO

In most organisms, dedicated multiprotein complexes, called exosome or RNA degradosome, carry out RNA degradation and processing. In addition to varying exoribonucleases or endoribonucleases, most of these complexes contain a RNA helicase. In the Gram-positive bacterium Bacillus subtilis, a RNA degradosome has recently been described; however, no RNA helicase was identified. In this work, we tested the interaction of the four DEAD box RNA helicases encoded in the B. subtilis genome with the RNA degradosome components. One of these helicases, CshA, is able to interact with several of the degradosome proteins, i.e. RNase Y, the polynucleotide phosphorylase, and the glycolytic enzymes enolase and phosphofructokinase. The determination of in vivo protein-protein interactions revealed that CshA is indeed present in a complex with polynucleotide phosphorylase. CshA is composed of two RecA-like domains that are found in all DEAD box RNA helicases and a C-terminal domain that is present in some members of this protein family. An analysis of the contribution of the individual domains of CshA revealed that the C-terminal domain is crucial both for dimerization of CshA and for all interactions with components of the RNA degradosome, including RNase Y. A transfer of this domain to CshB allowed the resulting chimeric protein to interact with RNase Y suggesting that this domain confers interaction specificity. As a degradosome component, CshA is present in the cell in similar amounts under all conditions. Taken together, our results suggest that CshA is the functional equivalent of the RhlB helicase of the Escherichia coli RNA degradosome.


Assuntos
Bacillus subtilis/enzimologia , Endorribonucleases/metabolismo , Complexos Multienzimáticos/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA Helicases/metabolismo , Bacillus subtilis/genética , Endorribonucleases/genética , Complexos Multienzimáticos/genética , Polirribonucleotídeo Nucleotidiltransferase/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica , RNA Helicases/genética
19.
Metab Eng ; 13(1): 18-27, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20933603

RESUMO

The majority of all proteins of a living cell is active in complexes rather than in an isolated way. These protein-protein interactions are of high relevance for many biological functions. In addition to many well established protein complexes an increasing number of protein-protein interactions, which form rather transient complexes has recently been discovered. The formation of such complexes seems to be a common feature especially for metabolic pathways. In the Gram-positive model organism Bacillus subtilis, we identified a protein complex of three citric acid cycle enzymes. This complex consists of the citrate synthase, the isocitrate dehydrogenase, and the malate dehydrogenase. Moreover, fumarase and aconitase interact with malate dehydrogenase and with each other. These five enzymes catalyze sequential reaction of the TCA cycle. Thus, this interaction might be important for a direct transfer of intermediates of the TCA cycle and thus for elevated metabolic fluxes via substrate channeling. In addition, we discovered a link between the TCA cycle and gluconeogenesis through a flexible interaction of two proteins: the association between the malate dehydrogenase and phosphoenolpyruvate carboxykinase is directly controlled by the metabolic flux. The phosphoenolpyruvate carboxykinase links the TCA cycle with gluconeogenesis and is essential for B. subtilis growing on gluconeogenic carbon sources. Only under gluconeogenic growth conditions an interaction of these two proteins is detectable and disappears under glycolytic growth conditions.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Metaboloma/fisiologia , Modelos Biológicos , Complexos Multienzimáticos/metabolismo , Transdução de Sinais/fisiologia , Mapeamento de Interação de Proteínas
20.
Mol Cell Proteomics ; 8(6): 1350-60, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19193632

RESUMO

Glycolysis is one of the most important metabolic pathways in heterotrophic organisms. Several genes encoding glycolytic enzymes are essential in many bacteria even under conditions when neither glycolytic nor gluconeogenic activities are required. In this study, a screening for in vivo interaction partners of glycolytic enzymes of the soil bacterium Bacillus subtilis was used to provide a rationale for essentiality of glycolytic enzymes. Glycolytic enzymes proved to be in close contact with several other proteins, among them a high proportion of essential proteins. Among these essential interaction partners, other glycolytic enzymes were most prominent. Two-hybrid studies confirmed interactions of phosphofructokinase with phosphoglyceromutase and enolase. Such a complex of glycolytic enzymes might allow direct substrate channeling of glycolytic intermediates. Moreover we found associations of glycolytic enzymes with several proteins known or suspected to be involved in RNA processing and degradation. One of these proteins, Rny (YmdA), which has so far not been functionally characterized, is required for the processing of the mRNA of the glycolytic gapA operon. Two-hybrid analyses confirmed the interactions between the glycolytic enzymes phosphofructokinase and enolase and the enzymes involved in RNA processing, RNase J1, Rny, and polynucleotide phosphorylase. Moreover RNase J1 interacts with its homologue RNase J2. We suggest that this complex of mRNA processing and glycolytic enzymes is the B. subtilis equivalent of the RNA degradosome. Our findings suggest that the functional interaction of glycolytic enzymes with essential proteins may be the reason why they are indispensable.


Assuntos
Bacillus subtilis/enzimologia , Fosfofrutoquinases/metabolismo , Fosfoglicerato Mutase/metabolismo , Fosfopiruvato Hidratase/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Sequência de Bases , Northern Blotting , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Glicólise , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa