Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
NMR Biomed ; : e5146, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38533593

RESUMO

The decoupled 8 × 2 transceiver array has been shown to achieve a mean B1 + of 11.7 uT with a coefficient of variation of ~11% over the intracranial brain volume for 7-T MR imaging. However, this array may be thought to give lower signal-to-noise ratio (SNR) and higher g-factors for parallel imaging compared with a radio frequency (RF) receive-only coil due to the latter's higher coil count and use of coil overlap to reduce the mutual impedance. Nonetheless, because the transceiver's highly decoupled design (pertinent for transmission) should also be constructive for reception, we measured the noise correlation, g-factors, and SNR for the decoupled transceiver in comparison with a commercial reference coil. We found that although the transceiver has half the number of receive elements in comparison with the reference coil (16 vs. 32), comparable g-factors and SNR over the head were obtained. From five subjects, the transceiver versus reference coil SNR was 65 ± 10 versus 67 ± 15. The mean noise correlation for all coil pairs was 10% ± 5% and 12% ± 9% (transceiver and reference coil, respectively). As changes in load impedance may alter the S parameters, we also examined the performance of the transceiver with tuned and matched (TM) versus untuned and unmatched (UTM) conditions on five subjects. We found that the noise correlation and SNR are robust to load variation; a noise correlation of 10% ± 5% and 10% ± 6% was determined with TM versus UTM conditions (SNRUTM/SNRTM = 0.97 ± 0.08). Finally, we demonstrate the performance of the array in human brain using T2-weighted turbo spin echo imaging, finding excellent SNR performance in both caudal and rostral brain regions.

2.
NMR Biomed ; 36(12): e5021, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37586403

RESUMO

While B0 shimming is an important requirement for in vivo brain spectroscopy, for single voxel spectroscopy (SVS), the role for advanced shim methods has been questioned. Specifically, with the small spatial dimensions of the voxel, the extent to which inhomogeneities higher than second order exist and the ability of higher order shims to correct them is controversial. To assess this, we acquired SVS from two loci of neurophysiological interest, the rostral prefrontal cortex (rPFC; 8 cc) and hippocampus (Hc; 9 cc). The rPFC voxel was placed using SUsceptibility Managed Optimization (SUMO) and an initial B0 map that covers the entire cerebrum to cerebellum. In each location, we compared map-based shimming (Bolero) with projection-based shimming (FAST(EST)MAP). We also compared vendor-provided spherical harmonic first- and second-order shims with additional third- and fourth-order shim hardware. The 7T SVS acquisition used stimulated echo acquisition mode (STEAM) TR/TM/TE of 6 s/20 ms/8 ms, a tissue water acquisition for concentration reference, and LCModel for spectral analysis. In the rPFC (n = 7 subjects), Bolero shimming with first- and second-order shims reduced the residual inhomogeneity σ B 0 from 9.8 ± 4.5 Hz with FAST(EST)MAP to 6.5 ± 2.0 Hz. The addition of third- and fourth-order shims further reduced σ B 0 to 4.0 ± 0.8 Hz. In the Hc (n = 7 subjects), FAST(EST)MAP, Bolero with first- and second-order shims, and Bolero with first- to fourth-order shims achieved σ B 0 values of 8.6 ± 1.9, 5.6 ± 1.0, and 4.6 ± 0.9 Hz, respectively. The spectral linewidth, Δ v σ B 0 , was estimated with a Voigt lineshape using σ B 0 and T2 = 130 ms. Δ v σ B 0 significantly correlated with the Cramer-Rao lower bounds and concentrations of several metabolites, including glutamate and glutamine in the rPFC. In both loci, if the B0 distribution is well described by a Gaussian model, the variance of the metabolite concentrations is reduced, consistent with the LCModel fit based on a unimodal lineshape. Overall, the use of the high order and map-based B0 shim methods improved the accuracy and consistency of spectroscopic data.


Assuntos
Encéfalo , Cabeça , Humanos , Encéfalo/diagnóstico por imagem , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos
3.
Int J Mol Sci ; 24(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37175389

RESUMO

N-acetylaspartate (NAA) and choline (Cho) are two brain metabolites implicated in several key neuronal functions. Abnormalities in these metabolites have been reported in both early course and chronic patients with schizophrenia (SCZ). It is, however, unclear whether NAA and Cho's alterations occur even before the onset of the disorder. Clinical high risk (CHR) individuals are a population uniquely enriched for psychosis and SCZ. In this exploratory study, we utilized 7-Tesla magnetic resonance spectroscopic imaging (MRSI) to examine differences in total NAA (tNAA; NAA + N-acetylaspartylglutamate [NAAG]) and major choline-containing compounds, including glycerophosphorylcholine and phosphorylcholine [tCho], over the creatine (Cre) levels between 26 CHR and 32 healthy control (HC) subjects in the subcortical and cortical regions. While no tCho/Cre differences were found between groups in any of the regions of interest (ROIs), we found that CHR had significantly reduced tNAA/Cre in the right dorsal lateral prefrontal cortex (DLPFC) compared to HC, and that the right DLPFC tNAA/Cre reduction in CHR was negatively associated with their positive symptoms scores. No tNAA/Cre differences were found between CHR and HC in other ROIs. In conclusion, reduced tNAA/Cre in CHR vs. HC may represent a putative molecular biomarker for risk of psychosis and SCZ that is associated with symptom severity.


Assuntos
Hipocampo , Imageamento por Ressonância Magnética , Humanos , Espectroscopia de Ressonância Magnética , Hipocampo/metabolismo , Creatina/metabolismo , Ácido Aspártico/metabolismo , Colina/metabolismo
4.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555487

RESUMO

Converging lines of evidence suggest that an imbalance between excitation and inhibition is present in the dorsolateral prefrontal cortex (DLPFC) of schizophrenia (SCZ). Gamma-aminobutyric-acid (GABA) and, to a lesser extent, glutamate (Glu) abnormalities were reported in the DLPFC of SCZ patients, especially on the right hemisphere, by post-mortem studies. However, in vivo evidence of GABA, Glu, and Glu/GABA DLPFC abnormalities, particularly on the right side and the early stages of illness, is limited. In this preliminary study, we utilized 7-Tesla magnetic resonance spectroscopic imaging (MRSI) to investigate bilateral Glu/Creatine (Cre), GABA/Cre, and Glu/GABA in the DLPFC of sixteen first episode schizophrenia (FES), seventeen clinical high risk (CHR), and twenty-six healthy comparison (HC) subjects. FES and CHR had abnormal GABA/Cre and Glu/GABA in the right DLPFC (rDLPFC) compared with HC participants, while no differences were observed in the left DLPFC (lDLPFC) among the three groups. Furthermore, HC had higher Glu/GABA in rDLPFC compared to lDLPFC (R > L), whereas the opposite relationship (R < L) was observed in the DLPFC Glu/GABA of FES patients. Altogether, these findings indicate that GABA/Cre and Glu/GABA DLPFC alterations are present before illness manifestation and worsen in FES patients, thus representing a putative early pathophysiological biomarker for SCZ and related psychotic disorders.


Assuntos
Ácido Glutâmico , Esquizofrenia , Humanos , Córtex Pré-Frontal Dorsolateral , Esquizofrenia/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Ácido gama-Aminobutírico , Espectroscopia de Ressonância Magnética/métodos
5.
Hum Brain Mapp ; 42(7): 2089-2098, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33491831

RESUMO

Image labeling using convolutional neural networks (CNNs) are a template-free alternative to traditional morphometric techniques. We trained a 3D deep CNN to label the hippocampus and amygdala on whole brain 700 µm isotropic 3D MP2RAGE MRI acquired at 7T. Manual labels of the hippocampus and amygdala were used to (i) train the predictive model and (ii) evaluate performance of the model when applied to new scans. Healthy controls and individuals with epilepsy were included in our analyses. Twenty-one healthy controls and sixteen individuals with epilepsy were included in the study. We utilized the recently developed DeepMedic software to train a CNN to label the hippocampus and amygdala based on manual labels. Performance was evaluated by measuring the dice similarity coefficient (DSC) between CNN-based and manual labels. A leave-one-out cross validation scheme was used. CNN-based and manual volume estimates were compared for the left and right hippocampus and amygdala in healthy controls and epilepsy cases. The CNN-based technique successfully labeled the hippocampus and amygdala in all cases. Mean DSC = 0.88 ± 0.03 for the hippocampus and 0.8 ± 0.06 for the amygdala. CNN-based labeling was independent of epilepsy diagnosis in our sample (p = .91). CNN-based volume estimates were highly correlated with manual volume estimates in epilepsy cases and controls. CNNs can label the hippocampus and amygdala on native sub-mm resolution MP2RAGE 7T MRI. Our findings suggest deep learning techniques can advance development of morphometric analysis techniques for high field strength, high spatial resolution brain MRI.


Assuntos
Tonsila do Cerebelo/anatomia & histologia , Encéfalo/anatomia & histologia , Aprendizado Profundo , Epilepsia/patologia , Hipocampo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Adulto , Tonsila do Cerebelo/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade
6.
Magn Reson Med ; 85(6): 3463-3478, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33533500

RESUMO

PURPOSE: With increased interest in parallel transmission in ultrahigh-field MRI, methods are needed to correctly calculate the S-parameters and complex field maps of the parallel transmission coil. We present S-parameters paired with spatial field optimization to fully simulate a double-row 16-element transceiver array for brain MRI at 7 T. METHODS: We implemented a closed-form equation of the coil S-parameters and overall spatial B1+ field. We minimized a cost function, consisting of coil S-parameters and the B1+ homogeneity in brain tissue, by optimizing transceiver components, including matching, decoupling circuits, and lumped capacitors. With this, we are able to compare the in silico results determined with and without B1+ homogeneity weighting. Using the known voltage range from the host console, we reconstructed the B1+ maps of the array and performed RF shimming with four realistic head models. RESULTS: As performed with B1+ homogeneity weighting, the optimized coil circuit components were highly consistent over the four heads, producing well-tuned, matched, and decoupled coils. The mean peak forward powers and B1+ statistics for the head models are consistent with in vivo human results (N = 8). There are systematic differences in the transceiver components as optimized with or without B1+ homogeneity weighting, resulting in an improvement of 28.4 ± 7.5% in B1+ homogeneity with a small 1.9 ± 1.5% decline in power efficiency. CONCLUSION: This co-simulation methodology accurately simulates the transceiver, predicting consistent S-parameters, component values, and B1+ field. The RF shimming of the calculated field maps match the in vivo performance.


Assuntos
Imageamento por Ressonância Magnética , Simulação por Computador , Fenômenos Eletromagnéticos , Desenho de Equipamento , Humanos , Imagens de Fantasmas
7.
Magn Reson Med ; 85(1): 531-543, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32857424

RESUMO

PURPOSE: To describe and implement a strategy for dynamic slice-by-slice and multiband B0 shimming using spherical harmonic shims in the human brain at 7T. THEORY: For thin axial slices, spherical harmonic shims can be divided into pairs of shims (z-degenerate and non-z-degenerate) that are spatially degenerate, such that only ½ of the shims (non-z-degenerate) are required for single slice optimizations. However, when combined, the pairs of shims can be used to simultaneously generate the same in-plane symmetries but with different amplitudes as a function of their z location. This enables multiband shimming equivalent to that achievable by single slice-by-slice optimization. METHODS: All data were acquired at 7T using a spherical harmonic shim insert enabling shimming up through 4th order with two additional 5th order shims (1st-4th+). Dynamic shim updating was achieved using a 10A shim power supply with 2 ms ramps and constrained optimizations to minimize eddy currents. RESULTS: In groups of eight subjects, we demonstrated that: 1) dynamic updating using 1st-4th+ order shims reduced the SD of the B0 field over the whole brain from 32.4 ± 2.6 and 24.9 ± 2 Hz with 1st-2nd and 1st-4th+ static global shimming to 15.1 ± 1.7 Hz; 2) near equivalent performance was achieved when dynamically updating only the non-z-degenerate shims (14.3 ± 1.5 Hz), or when a using multiband shim factor of 2, MBs = 2, and all shims (14.4 ± 2.0 Hz). CONCLUSION: High order spherical harmonics provide substantial improvements over static global shimming and enable dynamic multiband shimming with near equivalent performance to that of dynamic slice-by-slice shimming. This reduces distortion in echo planar imaging.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Imagem Ecoplanar , Humanos
8.
NMR Biomed ; 34(6): e4507, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33754420

RESUMO

1 H-MRSI is commonly performed with gradient phase encoding, due to its simplicity and minimal radio frequency (RF) heating (specific absorption rate). Its two well-known main problems-(i) "voxel bleed" due to the intrinsic point-spread function, and (ii) chemical shift displacement error (CSDE) when slice-selective RF pulses are used, which worsens with increasing volume of interest (VOI) size-have long become accepted as unavoidable. Both problems can be mitigated with Hadamard multislice RF encoding. This is demonstrated and quantified with numerical simulations, in a multislice phantom and in five healthy young adult volunteers at 3 T, targeting a 2-cm thick temporal lobe VOI through the bilateral hippocampus. This frequently targeted region (e.g. in epilepsy and Alzheimer's disease) is subject to strong, 1-2 ppm.cm-1 regional B0, susceptibility gradients that can dramatically reduce the signal-to-noise ratio (SNR) and water suppression effectiveness. The chemical shift imaging (CSI) sequence used a 3-ms Shinnar-Le Roux (SLR) 90° RF pulse, acquiring eight steps in the slice direction. The Hadamard sequence acquired two overlapping slices using the same SLR 90° pulses, under twofold stronger gradients that proportionally halved the CSDE. Both sequences used 2D 20 × 20 rosette spectroscopic imaging (RSI) for in-plane spatial localization and both used RF and gradient performance characteristics that are easily met by all modern MRI instruments. The results show that Hadamard spectroscopic imaging (HSI) suffered dramatically less signal bleed within the VOI compared with CSI (<1% vs. approximately 26% in simulations; and 5%-8% vs. >50%) in a phantom specifically designed to test these effects. The voxels' SNR per unit volume per unit time was also 40% higher for HSI. In a group of five healthy volunteers, we show that HSI with in-plane 2D-RSI facilitates fast, 3D multivoxel encoding at submilliliter spatial resolution, over the bilateral human hippocampus, in under 10 min, with negligible CSDE, spectral and spatial contamination and more than 6% improved SNR per unit time per unit volume.


Assuntos
Imageamento Tridimensional , Espectroscopia de Prótons por Ressonância Magnética , Lobo Temporal/diagnóstico por imagem , Adulto , Simulação por Computador , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Imagens de Fantasmas , Razão Sinal-Ruído , Adulto Jovem
9.
NMR Biomed ; 34(6): e4492, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33751687

RESUMO

For the spectroscopic assessment of brain disorders that require large-volume coverage, the requirements of RF performance and field homogeneity are high. For epilepsy, this is also challenging given the inter-patient variation in location, severity and subtlety of anatomical identification and its tendency to involve the temporal region. We apply a targeted method to examine the utility of large-volume MR spectroscopic imaging (MRSI) in surgical epilepsy patients, implementing a two-step acquisition, comprised of a 3D acquisition to cover the fronto-parietal regions, and a contiguous parallel two-slice Hadamard-encoded acquisition to cover the temporal-occipital region, both with TR /TE = 2000/40 ms and matched acquisition times. With restricted (static, first/second-order) B0 shimming in their respective regions, the Cramér-Rao lower bounds for creatine from the temporal lobe two-slice Hadamard and frontal-parietal 3D acquisition are 8.1 ± 2.2% and 6.3 ± 1.9% respectively. The datasets are combined to provide a total 60 mm axial coverage over the frontal, parietal and superior temporal to middle temporal-occipital regions. We applied these acquisitions at a nominal 400 mm3 voxel resolution in n = 27 pre-surgical epilepsy patients and n = 20 controls. In controls, 86.6 ± 3.2% voxels with at least 50% tissue (white + gray matter, excluding CSF) survived spectral quality inclusion criteria. Since all patients were clinically followed for at least 1 year after surgery, seizure frequency outcome was available for all. The MRSI measurements of the total fractional metabolic dysfunction (characterized by the Cr/NAA metric) in FreeSurfer MRI gray matter segmented regions, in the patients compared with the controls, exhibited a significant Spearman correlation with post-surgical outcome. This finding suggests that a larger burden of metabolic dysfunction is seen in patients with poorer post-surgical seizure control.


Assuntos
Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Espectroscopia de Ressonância Magnética , Adulto , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Estudos de Casos e Controles , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
10.
NMR Biomed ; 34(5): e4350, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32596978

RESUMO

Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) allow the chemical analysis of physiological processes in vivo and provide powerful tools in the life sciences and for clinical diagnostics. Excellent homogeneity of the static B0 magnetic field over the object of interest is essential for achieving high-quality spectral results and quantitative metabolic measurements. The experimental minimization of B0 variation is performed in a process called B0 shimming. In this article, we summarize the concepts of B0 field shimming using spherical harmonic shimming techniques, specific strategies for B0 homogenization and crucial factors to consider for implementation and use in both brain and body. In addition, experts' recommendations are provided for minimum requirements for B0 shim hardware and evaluation criteria for the primary outcome of adequate B0 shimming for MRS and MRSI, such as the water spectroscopic linewidth.


Assuntos
Consenso , Imageamento por Ressonância Magnética , Animais , Calibragem , Simulação por Computador , Prova Pericial , Humanos , Campos Magnéticos , Processamento de Sinais Assistido por Computador
11.
NMR Biomed ; 34(5): e4459, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33327042

RESUMO

The neurochemical information provided by proton magnetic resonance spectroscopy (MRS) or MR spectroscopic imaging (MRSI) can be severely compromised if strong signals originating from brain water and extracranial lipids are not properly suppressed. The authors of this paper present an overview of advanced water/lipid-suppression techniques and describe their advantages and disadvantages. Moreover, they provide recommendations for choosing the most appropriate techniques for proper use. Methods of water signal handling are primarily focused on the VAPOR technique and on MRS without water suppression (metabolite cycling). The section on lipid-suppression methods in MRSI is divided into three parts. First, lipid-suppression techniques that can be implemented on most clinical MR scanners (volume preselection, outer-volume suppression, selective lipid suppression) are described. Second, lipid-suppression techniques utilizing the combination of k-space filtering, high spatial resolutions and lipid regularization are presented. Finally, three promising new lipid-suppression techniques, which require special hardware (a multi-channel transmit system for dynamic B1+ shimming, a dedicated second-order gradient system or an outer volume crusher coil) are introduced.


Assuntos
Encéfalo/diagnóstico por imagem , Consenso , Lipídeos/química , Imageamento por Ressonância Magnética , Espectroscopia de Prótons por Ressonância Magnética , Água/química , Prova Pericial , Humanos , Metaboloma , Ondas de Rádio , Processamento de Sinais Assistido por Computador
12.
Magn Reson Med ; 81(5): 2924-2936, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30450583

RESUMO

PURPOSE: T2 -weighted lesional imaging is most commonly performed using inversion recovery turbo spin echoes. At 7 T, however, this acquisition is limited for specific absorption rate and resolution. This work describes and implements a method to generate CSF-suppressed T2 -weighted imaging. METHODS: The strategy uses a driven equilibrium spin-echo preparation within an inversion recovery with multiple 3D gradient-echo imaging blocks. Images are combined using the self-normalization approach, which achieves CSF suppression through optimized timing of individual blocks and minimizes sources of variation due to coil receptivity, T2* , and proton density. Simulations of the magnetization-prepared fluid-attenuated inversion recovery gradient-echo (MPFLAGRE) method over T1 and T2 relaxation values are performed, and in vivo demonstrations using an 8 × 2 transceiver array in healthy controls are shown. RESULTS: The specific absorption rate of the calculated MPFLAGRE sequence is 11.1 ± 0.5 W (n = 5 volunteers), which is 74 ± 2% of the US Food and Drug Administration guidelines. This method acquires both contrasts for CSF suppression with detection of long T2 components and T2 -weighted imaging in a single acquisition. In healthy controls, the former contrast generates increased signal in the cortical rim and ependyma. A comparison is shown with a conventional 3D SPACE fluid-attenuated inversion recovery acquisition, and sensitivity to pathology is demonstrated in an epilepsy patient. CONCLUSION: As applied with the 8 × 2 transceiver, the MPFLAGRE sequence generates both whole-brain contrast suitable for lesional and T2 -weighted imaging at 7 T in fewer than 10 minutes within the US Food and Drug Administration's specific absorption rate guidelines.


Assuntos
Encéfalo/diagnóstico por imagem , Líquido Cefalorraquidiano/diagnóstico por imagem , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética , Algoritmos , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Razão Sinal-Ruído , Imagem Corporal Total
13.
Magn Reson Med ; 82(1): 263-275, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30883909

RESUMO

PURPOSE: To overcome existing challenges in dynamic B0 shimming by implementing a shim optimization algorithm which limits shim current amplitudes and their temporal variation through the application of constraints and regularization terms. THEORY AND METHODS: Spherical harmonic dynamic B0 shimming is complicated by eddy currents, ill-posed optimizations, and the need for strong power supplies. Based on the fact that eddy current amplitudes are proportional to the magnitude of the shim current changes, and assuming a smoothness of the B0 inhomogeneity variation in the slice direction, a novel algorithm was implemented to reduce eddy current generation by limiting interslice shim current changes. Shim degeneracy issues and resulting high current amplitudes are additionally addressed by penalizing high solution norms. Applicability of the proposed algorithm was validated in simulations and in phantom and in vivo measurements. RESULTS: High-order dynamic shimming simulations and measurements have shown that absolute shim current amplitudes and their temporal variation can be substantially reduced with negligible loss in achievable B0 homogeneity. Whereas conventional dynamic shim updating optimizations improve the B0 homogeneity, on average, by a factor of 2.1 over second-order static solutions, our proposed routine reached a factor of 2.0, while simultaneously providing a 14-fold reduction of the average maximum shim current changes. CONCLUSIONS: The proposed algorithm substantially reduces the shim amplitudes and their temporal variation, while only marginally affecting the achievable B0  homogeneity. As a result, it has the potential to mitigate the remaining challenges in dynamic B0 shimming and help in making its application more readily available.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Campos Eletromagnéticos , Humanos , Imagens de Fantasmas
14.
Magn Reson Med ; 82(2): 527-550, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30919510

RESUMO

Proton MRS (1 H MRS) provides noninvasive, quantitative metabolite profiles of tissue and has been shown to aid the clinical management of several brain diseases. Although most modern clinical MR scanners support MRS capabilities, routine use is largely restricted to specialized centers with good access to MR research support. Widespread adoption has been slow for several reasons, and technical challenges toward obtaining reliable good-quality results have been identified as a contributing factor. Considerable progress has been made by the research community to address many of these challenges, and in this paper a consensus is presented on deficiencies in widely available MRS methodology and validated improvements that are currently in routine use at several clinical research institutions. In particular, the localization error for the PRESS localization sequence was found to be unacceptably high at 3 T, and use of the semi-adiabatic localization by adiabatic selective refocusing sequence is a recommended solution. Incorporation of simulated metabolite basis sets into analysis routines is recommended for reliably capturing the full spectral detail available from short TE acquisitions. In addition, the importance of achieving a highly homogenous static magnetic field (B0 ) in the acquisition region is emphasized, and the limitations of current methods and hardware are discussed. Most recommendations require only software improvements, greatly enhancing the capabilities of clinical MRS on existing hardware. Implementation of these recommendations should strengthen current clinical applications and advance progress toward developing and validating new MRS biomarkers for clinical use.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/metabolismo , Consenso , Humanos , Prótons
15.
Magn Reson Med ; 79(5): 2470-2480, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28905419

RESUMO

PURPOSE: To use a fast 3D rosette spectroscopic imaging acquisition to quantitatively evaluate how spectral quality influences detection of the endogenous variation of gray and white matter metabolite differences in controls, and demonstrate how rosette spectroscopic imaging can detect metabolic dysfunction in patients with neocortical abnormalities. METHODS: Data were acquired on a 3T MR scanner and 32-channel head coil, with rosette spectroscopic imaging covering a 4-cm slab of fronto-parietal-temporal lobes. The influence of acquisition parameters and filtering on spectral quality and sensitivity to tissue composition was assessed by LCModel analysis, the Cramer-Rao lower bound, and the standard errors from regression analyses. The optimized protocol was used to generate normative white and gray matter regressions and evaluate three patients with neocortical abnormalities. RESULTS: As a measure of the sensitivity to detect abnormalities, the standard errors of regression for Cr/NAA and Ch/NAA were significantly correlated with the Cramer-Rao lower bound values (R = 0.89 and 0.92, respectively, both with P < 0.001). The rosette acquisition with a duration of 9.6 min, produces a mean Cramer-Rao lower bound (%) over the entire slab of 4.6 ± 2.6 and 5.8 ± 2.3 for NAA and Cr, respectively. This enables a Cr/NAA standard error of 0.08 (i.e., detection sensitivity of 25% for a 50/50 mixed gray and white matter voxel). In healthy controls, the regression of Cr/NAA versus fraction gray matter in the cingulate differs from frontal and parietal regions. CONCLUSIONS: Fast rosette spectroscopic imaging acquisitions with regression analyses are able to identify metabolic differences across 4-cm slabs of the brain centrally and over the cortical periphery with high efficiency, generating results that are consistent with clinical findings. Magn Reson Med 79:2470-2480, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neocórtex/anormalidades , Neocórtex/diagnóstico por imagem , Adulto , Astrocitoma/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
16.
Magn Reson Med ; 78(5): 1734-1745, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-27910126

RESUMO

PURPOSE: To quantitatively assess the effects of high degree and order (1st -4th+ ) relative to 1st -2nd degree B0 shimming at 7 Tesla (T) on gradient-echo echo planar imaging (GE-EPI) and blood-oxygen-level dependent (BOLD) activation. METHODS: Simulations and GE-EPI were performed at (2mm)3 and (3mm)3 resolution, evaluating the temporal signal-to-noise ratio (tSNR), transverse relaxivity ( R2*), BOLD % signal change and activated pixel counts in a breath-hold task. RESULTS: Comparing the 1st -4th+ degree with 1st -2nd degree shimmed B0 maps generated spatially varying regions of Δ|B0|=|B01-2|-|B01-4+|. As binned in 10-Hz intervals, the two center Δ|B0 | (±10 Hz) bins maintained the B0 offset of 48.6% of gray-matter pixels. In the positive Δ|B0 | bins greater than 10 Hz, the 1st -4th+ degree shimming improved the B0 offset in 41.1%; in negative Δ|B0 | bins less than -10 Hz, the offset worsened in 10.2% of the pixels. In the positive Δ|B0 | bins, we found variable but significant increases in BOLD sensitivity; the negative Δ|B0 | bins showed significant decreases. In the breath-hold studies, positive bins showed significantly increased activated pixel numbers (+5-29%), whereas negative bins showed -18 to 0% decline. CONCLUSION: 1st -4th+ degree shimming maintained B0 homogeneity over central brain regions while improving most of the other regions, including the inferior frontal lobe. Magn Reson Med 78:1734-1745, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Adulto , Algoritmos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
Magn Reson Med ; 76(5): 1604-1611, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27487798

RESUMO

PURPOSE: A novel multichannel shim array is introduced to improve MRI and spectroscopic studies of the human spinal cord. METHODS: Twenty-four-channel shim and 8-channel transceiver arrays were designed to insert into the patient bed table to lie in close proximity to the subject's spine. The reference field patterns of each of the shim channels (Hz/A) were determined empirically via gradient echo field mapping and subsequently used to demonstrate shim performance at 3 Tesla using an ex vivo phantom, which incorporated a fixed human spine. The shim was further demonstrated on five healthy volunteers. RESULTS: Application of the shim to the ex vivo phantom reduced the standard deviation of the field over the spinal volume of interest (123.4 cm3 ) from an original 51.3 Hz down to 32.5 Hz, amounting to an improvement in field homogeneity of 36.6%. In vivo, the spine shim resulted in an average improvement in field homogeneity of 63.8 ± 15.4%. CONCLUSION: The localized spine shim offers a promising new means of correcting magnetic field distortion in the spinal cord. Magn Reson Med 76:1604-1611, 2016. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/métodos , Magnetismo/instrumentação , Medula Espinal/anatomia & histologia , Transdutores , Adulto , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Masculino , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Magn Reson Med ; 76(2): 380-90, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26308482

RESUMO

PURPOSE: To optimize the Rosette trajectories for high-sensitivity in vivo brain spectroscopic imaging and reduced gradient demands. METHODS: Using LASER localization, a rosette based sampling scheme for in vivo brain spectroscopic imaging data on a 3 Tesla (T) system is described. The two-dimensional (2D) and 3D rosette spectroscopic imaging (RSI) data were acquired using 20 × 20 in-plane resolution (8 × 8 mm(2) ), and 1 (2D) -18 mm (1.1 cc) or 12 (3D) -8 mm partitions (0.5 cc voxels). The performance of the RSI acquisition was compared with a conventional spectroscopic imaging (SI) sequence using LASER localization and 2D or 3D elliptical phase encoding (ePE). Quantification of the entire RSI data set was performed using an LCModel based pipeline. RESULTS: The RSI acquisitions took 32 s for the 2D scan, and as short as 5 min for the 3D 20 × 20 × 12 scan, using a maximum gradient strength Gmax=5.8 mT/m and slew-rate Smax=45 mT/m/ms. The Bland-Altman agreement between RSI and ePE CSI, characterized by the 95% confidence interval for their difference (RSI-ePE), is within 13% of the mean (RSI+ePE)/2. Compared with the 3D ePE at the same nominal resolution, the effective RSI voxel size was three times smaller while the measured signal-to-noise ratio sensitivity, after normalization for differences in effective size, was 43% greater. CONCLUSION: 3D LASER-RSI is a fast, high-sensitivity spectroscopic imaging sequence, which can acquire medium-to-high resolution SI data in clinically acceptable scan times (5-10 min), with reduced stress on the gradient system. Magn Reson Med 76:380-390, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Química Encefálica , Encéfalo/anatomia & histologia , Interpretação de Imagem Assistida por Computador/métodos , Lasers , Espectrometria de Massas/métodos , Imagem Molecular/métodos , Reconhecimento Automatizado de Padrão/métodos , Adulto , Algoritmos , Feminino , Humanos , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Liver Int ; 35(4): 1145-51, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25775097

RESUMO

BACKGROUND & AIMS: Radiation-induced liver damage (RILD) is a poorly understood and potentially devastating complication of hepatic radiation therapy (RT) for liver cancers. Previous work has demonstrated that hepatocyte transplantation (HT) can ameliorate RILD in rats. We hypothesized that RT inhibits generation of cellular ATP and suppresses hepatic regeneration. METHODS: To study the metabolic changes that occur in RILD with and without HT, (31)P MRSI data were acquired in rats treated with partial hepatectomy (PH) alone, PH with hepatic irradiation (PHRT) or PHRT with HT (PHRT+HT). RESULTS: Both [γ -ATP] and ATP/Pi (31)P MRSI signal ratio initially decreased and subsequently returned to baseline levels within 2 weeks after PH, which is consistent with other published data. Persistently reduced [γ-ATP] and ATP/Pi (31)P MRSI signal ratio were observed in rats up to 20 weeks after PHRT. However, progressive increases in [γ -ATP] were observed over time in the group of rats receiving PHRT+HT. Normal [γ -ATP] was observed 20 weeks after PHRT+HT (vs. PH alone), although, ATP/Pi levels did not return to normal after PHRT +HT. Ex vivo histological studies were performed to confirm liver repopulation with transplanted hepatocytes and the amelioration of pathologic changes of RILD. CONCLUSIONS: These findings suggest that (31)P MRSI can be used to monitor the progress of RILD and its amelioration using transplanted hepatocytes to simultaneously restore metabolic function while replacing host hepatocytes damaged by RT.


Assuntos
Metabolismo Energético , Hepatócitos/transplante , Regeneração Hepática , Fígado/cirurgia , Espectroscopia de Ressonância Magnética/métodos , Lesões Experimentais por Radiação/cirurgia , Trifosfato de Adenosina/metabolismo , Animais , Proliferação de Células , Hepatectomia/métodos , Hepatócitos/metabolismo , Hepatócitos/patologia , Fígado/metabolismo , Fígado/patologia , Fígado/fisiopatologia , Masculino , Espectroscopia de Prótons por Ressonância Magnética , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/fisiopatologia , Ratos Endogâmicos F344 , Recuperação de Função Fisiológica , Fatores de Tempo
20.
Radiology ; 270(3): 658-79, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24568703

RESUMO

A large body of published work shows that proton (hydrogen 1 [(1)H]) magnetic resonance (MR) spectroscopy has evolved from a research tool into a clinical neuroimaging modality. Herein, the authors present a summary of brain disorders in which MR spectroscopy has an impact on patient management, together with a critical consideration of common data acquisition and processing procedures. The article documents the impact of (1)H MR spectroscopy in the clinical evaluation of disorders of the central nervous system. The clinical usefulness of (1)H MR spectroscopy has been established for brain neoplasms, neonatal and pediatric disorders (hypoxia-ischemia, inherited metabolic diseases, and traumatic brain injury), demyelinating disorders, and infectious brain lesions. The growing list of disorders for which (1)H MR spectroscopy may contribute to patient management extends to neurodegenerative diseases, epilepsy, and stroke. To facilitate expanded clinical acceptance and standardization of MR spectroscopy methodology, guidelines are provided for data acquisition and analysis, quality assessment, and interpretation. Finally, the authors offer recommendations to expedite the use of robust MR spectroscopy methodology in the clinical setting, including incorporation of technical advances on clinical units.


Assuntos
Biomarcadores/metabolismo , Doenças do Sistema Nervoso Central/diagnóstico , Espectroscopia de Ressonância Magnética/métodos , Doenças do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa