Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Syst Biol ; 66(2): 152-166, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27616324

RESUMO

Rapidly growing biological data-including molecular sequences and fossils-hold an unprecedented potential to reveal how evolutionary processes generate and maintain biodiversity. However, researchers often have to develop their own idiosyncratic workflows to integrate and analyze these data for reconstructing time-calibrated phylogenies. In addition, divergence times estimated under different methods and assumptions, and based on data of various quality and reliability, should not be combined without proper correction. Here we introduce a modular framework termed SUPERSMART (Self-Updating Platform for Estimating Rates of Speciation and Migration, Ages, and Relationships of Taxa), and provide a proof of concept for dealing with the moving targets of evolutionary and biogeographical research. This framework assembles comprehensive data sets of molecular and fossil data for any taxa and infers dated phylogenies using robust species tree methods, also allowing for the inclusion of genomic data produced through next-generation sequencing techniques. We exemplify the application of our method by presenting phylogenetic and dating analyses for the mammal order Primates and for the plant family Arecaceae (palms). We believe that this framework will provide a valuable tool for a wide range of hypothesis-driven research questions in systematics, biogeography, and evolution. SUPERSMART will also accelerate the inference of a "Dated Tree of Life" where all node ages are directly comparable. [Bayesian phylogenetics; data mining; divide-and-conquer methods; GenBank; multilocus multispecies coalescent; next-generation sequencing; palms; primates; tree calibration.].


Assuntos
Classificação/métodos , Fósseis , Filogenia , Fatores Etários , Migração Animal , Animais , Arecaceae/classificação , Teorema de Bayes , Primatas/classificação , Reprodutibilidade dos Testes , Tempo
2.
BMC Ecol ; 16(1): 49, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27765035

RESUMO

BACKGROUND: Making forecasts about biodiversity and giving support to policy relies increasingly on large collections of data held electronically, and on substantial computational capability and capacity to analyse, model, simulate and predict using such data. However, the physically distributed nature of data resources and of expertise in advanced analytical tools creates many challenges for the modern scientist. Across the wider biological sciences, presenting such capabilities on the Internet (as "Web services") and using scientific workflow systems to compose them for particular tasks is a practical way to carry out robust "in silico" science. However, use of this approach in biodiversity science and ecology has thus far been quite limited. RESULTS: BioVeL is a virtual laboratory for data analysis and modelling in biodiversity science and ecology, freely accessible via the Internet. BioVeL includes functions for accessing and analysing data through curated Web services; for performing complex in silico analysis through exposure of R programs, workflows, and batch processing functions; for on-line collaboration through sharing of workflows and workflow runs; for experiment documentation through reproducibility and repeatability; and for computational support via seamless connections to supporting computing infrastructures. We developed and improved more than 60 Web services with significant potential in many different kinds of data analysis and modelling tasks. We composed reusable workflows using these Web services, also incorporating R programs. Deploying these tools into an easy-to-use and accessible 'virtual laboratory', free via the Internet, we applied the workflows in several diverse case studies. We opened the virtual laboratory for public use and through a programme of external engagement we actively encouraged scientists and third party application and tool developers to try out the services and contribute to the activity. CONCLUSIONS: Our work shows we can deliver an operational, scalable and flexible Internet-based virtual laboratory to meet new demands for data processing and analysis in biodiversity science and ecology. In particular, we have successfully integrated existing and popular tools and practices from different scientific disciplines to be used in biodiversity and ecological research.


Assuntos
Biodiversidade , Ecologia/métodos , Ecologia/instrumentação , Internet , Modelos Biológicos , Software , Fluxo de Trabalho
3.
PLoS Comput Biol ; 7(8): e1002130, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21912519

RESUMO

In this study the function of the two isoforms of creatine kinase (CK; EC 2.7.3.2) in myocardium is investigated. The 'phosphocreatine shuttle' hypothesis states that mitochondrial and cytosolic CK plays a pivotal role in the transport of high-energy phosphate (HEP) groups from mitochondria to myofibrils in contracting muscle. Temporal buffering of changes in ATP and ADP is another potential role of CK. With a mathematical model, we analyzed energy transport and damping of high peaks of ATP hydrolysis during the cardiac cycle. The analysis was based on multiscale data measured at the level of isolated enzymes, isolated mitochondria and on dynamic response times of oxidative phosphorylation measured at the whole heart level. Using 'sloppy modeling' ensemble simulations, we derived confidence intervals for predictions of the contributions by phosphocreatine (PCr) and ATP to the transfer of HEP from mitochondria to sites of ATP hydrolysis. Our calculations indicate that only 15±8% (mean±SD) of transcytosolic energy transport is carried by PCr, contradicting the PCr shuttle hypothesis. We also predicted temporal buffering capabilities of the CK isoforms protecting against high peaks of ATP hydrolysis (3750 µM*s(-1)) in myofibrils. CK inhibition by 98% in silico leads to an increase in amplitude of mitochondrial ATP synthesis pulsation from 215±23 to 566±31 µM*s(-1), while amplitudes of oscillations in cytosolic ADP concentration double from 77±11 to 146±1 µM. Our findings indicate that CK acts as a large bandwidth high-capacity temporal energy buffer maintaining cellular ATP homeostasis and reducing oscillations in mitochondrial metabolism. However, the contribution of CK to the transport of high-energy phosphate groups appears limited. Mitochondrial CK activity lowers cytosolic inorganic phosphate levels while cytosolic CK has the opposite effect.


Assuntos
Biologia Computacional/métodos , Creatina Quinase/metabolismo , Modelos Biológicos , Miocárdio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Citosol/metabolismo , Metabolismo Energético , Isoenzimas , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Método de Monte Carlo , Contração Miocárdica/fisiologia , Miocárdio/enzimologia , Fosfocreatina/metabolismo , Coelhos , Ratos
4.
Bioinformatics ; 26(10): 1366-7, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20418341

RESUMO

SUMMARY: CGHnormaliter is a package for normalization of array comparative genomic hybridization (aCGH) data. It uses an iterative procedure that effectively eliminates the influence of imbalanced copy numbers. This leads to a more reliable assessment of copy number alterations (CNAs). CGHnormaliter is integrated in the Bioconductor environment allowing a smooth link to visualization tools and further data analysis. AVAILABILITY AND IMPLEMENTATION: The CGHnormaliter package is implemented in R and under GPL 3.0 license available at Bioconductor: http://www.bioconductor.org CONTACT: heringa@few.vu.nl


Assuntos
Hibridização Genômica Comparativa/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Software , Bases de Dados Genéticas , Perfilação da Expressão Gênica
5.
BMC Genomics ; 10: 401, 2009 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-19709427

RESUMO

BACKGROUND: Array comparative genomic hybridization (aCGH) is a popular technique for detection of genomic copy number imbalances. These play a critical role in the onset of various types of cancer. In the analysis of aCGH data, normalization is deemed a critical pre-processing step. In general, aCGH normalization approaches are similar to those used for gene expression data, albeit both data-types differ inherently. A particular problem with aCGH data is that imbalanced copy numbers lead to improper normalization using conventional methods. RESULTS: In this study we present a novel method, called CGHnormaliter, which addresses this issue by means of an iterative normalization procedure. First, provisory balanced copy numbers are identified and subsequently used for normalization. These two steps are then iterated to refine the normalization. We tested our method on three well-studied tumor-related aCGH datasets with experimentally confirmed copy numbers. Results were compared to a conventional normalization approach and two more recent state-of-the-art aCGH normalization strategies. Our findings show that, compared to these three methods, CGHnormaliter yields a higher specificity and precision in terms of identifying the 'true' copy numbers. CONCLUSION: We demonstrate that the normalization of aCGH data can be significantly enhanced using an iterative procedure that effectively eliminates the effect of imbalanced copy numbers. This also leads to a more reliable assessment of aberrations. An R-package containing the implementation of CGHnormaliter is available at http://www.ibi.vu.nl/programs/cghnormaliterwww.


Assuntos
Hibridização Genômica Comparativa/métodos , Dosagem de Genes , Análise de Sequência com Séries de Oligonucleotídeos/métodos , DNA de Neoplasias/genética , Humanos , Sensibilidade e Especificidade , Análise de Sequência de DNA/métodos
6.
Life (Basel) ; 8(2)2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874797

RESUMO

The exceptional increase in molecular DNA sequence data in open repositories is mirrored by an ever-growing interest among evolutionary biologists to harvest and use those data for phylogenetic inference. Many quality issues, however, are known and the sheer amount and complexity of data available can pose considerable barriers to their usefulness. A key issue in this domain is the high frequency of sequence mislabeling encountered when searching for suitable sequences for phylogenetic analysis. These issues include, among others, the incorrect identification of sequenced species, non-standardized and ambiguous sequence annotation, and the inadvertent addition of paralogous sequences by users. Taken together, these issues likely add considerable noise, error or bias to phylogenetic inference, a risk that is likely to increase with the size of phylogenies or the molecular datasets used to generate them. Here we present a software package, phylotaR that bypasses the above issues by using instead an alignment search tool to identify orthologous sequences. Our package builds on the framework of its predecessor, PhyLoTa, by providing a modular pipeline for identifying overlapping sequence clusters using up-to-date GenBank data and providing new features, improvements and tools. We demonstrate and test our pipeline's effectiveness by presenting trees generated from phylotaR clusters for two large taxonomic clades: Palms and primates. Given the versatility of this package, we hope that it will become a standard tool for any research aiming to use GenBank data for phylogenetic analysis.

7.
PLoS One ; 10(3): e0119016, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25806817

RESUMO

Predicting the distribution of metabolic fluxes in biochemical networks is of major interest in systems biology. Several databases provide metabolic reconstructions for different organisms. Software to analyze flux distributions exists, among others for the proprietary MATLAB environment. Given the large user community for the R computing environment, a simple implementation of flux analysis in R appears desirable and will facilitate easy interaction with computational tools to handle gene expression data. We extended the R software package BiGGR, an implementation of metabolic flux analysis in R. BiGGR makes use of public metabolic reconstruction databases, and contains the BiGG database and the reconstruction of human metabolism Recon2 as Systems Biology Markup Language (SBML) objects. Models can be assembled by querying the databases for pathways, genes or reactions of interest. Fluxes can then be estimated by maximization or minimization of an objective function using linear inverse modeling algorithms. Furthermore, BiGGR provides functionality to quantify the uncertainty in flux estimates by sampling the constrained multidimensional flux space. As a result, ensembles of possible flux configurations are constructed that agree with measured data within precision limits. BiGGR also features automatic visualization of selected parts of metabolic networks using hypergraphs, with hyperedge widths proportional to estimated flux values. BiGGR supports import and export of models encoded in SBML and is therefore interoperable with different modeling and analysis tools. As an application example, we calculated the flux distribution in healthy human brain using a model of central carbon metabolism. We introduce a new algorithm termed Least-squares with equalities and inequalities Flux Balance Analysis (Lsei-FBA) to predict flux changes from gene expression changes, for instance during disease. Our estimates of brain metabolic flux pattern with Lsei-FBA for Alzheimer's disease agree with independent measurements of cerebral metabolism in patients. This second version of BiGGR is available from Bioconductor.


Assuntos
Encéfalo/metabolismo , Simulação por Computador , Expressão Gênica , Redes e Vias Metabólicas , Modelos Biológicos , Algoritmos , Biologia Computacional , Humanos , Software , Biologia de Sistemas
8.
Biodivers Data J ; (2): e1125, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25057255

RESUMO

BACKGROUND: Recent years have seen a surge in projects that produce large volumes of structured, machine-readable biodiversity data. To make these data amenable to processing by generic, open source "data enrichment" workflows, they are increasingly being represented in a variety of standards-compliant interchange formats. Here, we report on an initiative in which software developers and taxonomists came together to address the challenges and highlight the opportunities in the enrichment of such biodiversity data by engaging in intensive, collaborative software development: The Biodiversity Data Enrichment Hackathon. RESULTS: The hackathon brought together 37 participants (including developers and taxonomists, i.e. scientific professionals that gather, identify, name and classify species) from 10 countries: Belgium, Bulgaria, Canada, Finland, Germany, Italy, the Netherlands, New Zealand, the UK, and the US. The participants brought expertise in processing structured data, text mining, development of ontologies, digital identification keys, geographic information systems, niche modeling, natural language processing, provenance annotation, semantic integration, taxonomic name resolution, web service interfaces, workflow tools and visualisation. Most use cases and exemplar data were provided by taxonomists. One goal of the meeting was to facilitate re-use and enhancement of biodiversity knowledge by a broad range of stakeholders, such as taxonomists, systematists, ecologists, niche modelers, informaticians and ontologists. The suggested use cases resulted in nine breakout groups addressing three main themes: i) mobilising heritage biodiversity knowledge; ii) formalising and linking concepts; and iii) addressing interoperability between service platforms. Another goal was to further foster a community of experts in biodiversity informatics and to build human links between research projects and institutions, in response to recent calls to further such integration in this research domain. CONCLUSIONS: Beyond deriving prototype solutions for each use case, areas of inadequacy were discussed and are being pursued further. It was striking how many possible applications for biodiversity data there were and how quickly solutions could be put together when the normal constraints to collaboration were broken down for a week. Conversely, mobilising biodiversity knowledge from their silos in heritage literature and natural history collections will continue to require formalisation of the concepts (and the links between them) that define the research domain, as well as increased interoperability between the software platforms that operate on these concepts.

9.
BMC Syst Biol ; 7: 82, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23965343

RESUMO

BACKGROUND: The aerobic energy metabolism of cardiac muscle cells is of major importance for the contractile function of the heart. Because energy metabolism is very heterogeneously distributed in heart tissue, especially during coronary disease, a method to quantify metabolic fluxes in small tissue samples is desirable. Taking tissue biopsies after infusion of substrates labeled with stable carbon isotopes makes this possible in animal experiments. However, the appreciable noise level in NMR spectra of extracted tissue samples makes computational estimation of metabolic fluxes challenging and a good method to define confidence regions was not yet available. RESULTS: Here we present a computational analysis method for nuclear magnetic resonance (NMR) measurements of tricarboxylic acid (TCA) cycle metabolites. The method was validated using measurements on extracts of single tissue biopsies taken from porcine heart in vivo. Isotopic enrichment of glutamate was measured by NMR spectroscopy in tissue samples taken at a single time point after the timed infusion of 13C labeled substrates for the TCA cycle. The NMR intensities for glutamate were analyzed with a computational model describing carbon transitions in the TCA cycle and carbon exchange with amino acids. The model dynamics depended on five flux parameters, which were optimized to fit the NMR measurements. To determine confidence regions for the estimated fluxes, we used the Metropolis-Hastings algorithm for Markov chain Monte Carlo (MCMC) sampling to generate extensive ensembles of feasible flux combinations that describe the data within measurement precision limits. To validate our method, we compared myocardial oxygen consumption calculated from the TCA cycle flux with in vivo blood gas measurements for 38 hearts under several experimental conditions, e.g. during coronary artery narrowing. CONCLUSIONS: Despite the appreciable NMR noise level, the oxygen consumption in the tissue samples, estimated from the NMR spectra, correlates with blood-gas oxygen uptake measurements for the whole heart. The MCMC method provides confidence regions for the estimated metabolic fluxes in single cardiac biopsies, taking the quantified measurement noise level and the nonlinear dependencies between parameters fully into account.


Assuntos
Ciclo do Ácido Cítrico , Biologia Computacional/métodos , Miocárdio/metabolismo , Miocárdio/patologia , Animais , Biópsia , Criopreservação , Espectroscopia de Ressonância Magnética , Método de Monte Carlo , Miocárdio/citologia , Suínos , Fatores de Tempo
10.
Philos Trans A Math Phys Eng Sci ; 369(1954): 4295-315, 2011 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-21969677

RESUMO

The human physiological system is stressed to its limits during endurance sports competition events. We describe a whole body computational model for energy conversion during bicycle racing. About 23 per cent of the metabolic energy is used for muscle work, the rest is converted to heat. We calculated heat transfer by conduction and blood flow inside the body, and heat transfer from the skin by radiation, convection and sweat evaporation, resulting in temperature changes in 25 body compartments. We simulated a mountain time trial to Alpe d'Huez during the Tour de France. To approach the time realized by Lance Armstrong in 2004, very high oxygen uptake must be sustained by the simulated cyclist. Temperature was predicted to reach 39°C in the brain, and 39.7°C in leg muscle. In addition to the macroscopic simulation, we analysed the buffering of bursts of high adenosine triphosphate hydrolysis by creatine kinase during cyclical muscle activity at the biochemical pathway level. To investigate the low oxygen to carbohydrate ratio for the brain, which takes up lactate during exercise, we calculated the flux distribution in cerebral energy metabolism. Computational modelling of the human body, describing heat exchange and energy metabolism, makes simulation of endurance sports events feasible.


Assuntos
Atletas , Metabolismo Energético/fisiologia , Resistência Física/fisiologia , Esportes/fisiologia , Trifosfato de Adenosina/metabolismo , Ciclismo , Biofísica/métodos , Temperatura Corporal , Simulação por Computador , Temperatura Alta , Humanos , Masculino , Modelos Biológicos , Músculo Esquelético/patologia , Fatores de Tempo
11.
Philos Trans A Math Phys Eng Sci ; 367(1895): 1971-92, 2009 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19380321

RESUMO

Modelling human and animal metabolism is impeded by the lack of accurate quantitative parameters and the large number of biochemical reactions. This problem may be tackled by: (i) study of modules of the network independently; (ii) ensemble simulations to explore many plausible parameter combinations; (iii) analysis of 'sloppy' parameter behaviour, revealing interdependent parameter combinations with little influence; (iv) multiscale analysis that combines molecular and whole network data; and (v) measuring metabolic flux (rate of flow) in vivo via stable isotope labelling. For the latter method, carbon transition networks were modelled with systems of ordinary differential equations, but we show that coloured Petri nets provide a more intuitive graphical approach. Analysis of parameter sensitivities shows that only a few parameter combinations have a large effect on predictions. Model analysis of high-energy phosphate transport indicates that membrane permeability, inaccurately known at the organellar level, can be well determined from whole-organ responses. Ensemble simulations that take into account the imprecision of measured molecular parameters contradict the popular hypothesis that high-energy phosphate transport in heart muscle is mostly by phosphocreatine. Combining modular, multiscale, ensemble and sloppy modelling approaches with in vivo flux measurements may prove indispensable for the modelling of the large human metabolic system.


Assuntos
Metabolismo , Modelos Biológicos , Animais , Humanos , Miocárdio/metabolismo , Fosfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa