Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Extremophiles ; 26(2): 18, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35652980

RESUMO

Hypersaline ecosystems host a particular microbiota, which can be specifically recruited by halophytes. In order to broaden our knowledge of hypersaline ecosystems, an in natura study was conducted on the microbiota associated with the halophyte Halocnemum strobilaceum from alkaline-saline arid soil in Algeria. We collected and identified a total of 414 strains isolated from root tissues (RT), root-adhering soil (RAS), non-adhering rhizospheric soil (NARS) and bulk soil (BS) using different NaCl concentrations. Our data showed that halophilic and halotolerant bacterial isolates in BS and the rhizosphere belonged to 32 genera distributed in Proteobacteria (49%), Firmicutes (36%), Actinobacteria (14%) and Bacteroidetes (1%). Bacterial population size and species diversity were greatly increased in the rhizosphere (factor 100). The reservoir of diversity in BS was dominated by the genera Bacillus and Halomonas. Bacillus/Halomonas ratio decreased with the proximity to the roots from 2.2 in BS to 0.3 at the root surface. Salt screening of the strains showed that species belonging to nine genera were able to grow up to 5.1 M NaCl. Thus, we found that H. strobilaceum exerted a strong effect on the diversity of the recruited microbiota with an affinity strongly attributed to the genus Halomonas.


Assuntos
Microbiota , Rizosfera , Argélia , Bactérias , Plantas Tolerantes a Sal/microbiologia , Cloreto de Sódio , Solo , Microbiologia do Solo
2.
Molecules ; 27(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36364003

RESUMO

The current study examines the desiccation-resistant Ramlibacter tataouinensis TTB310T as a model organism for the production of novel exopolysaccharides and their structural features. This bacterium is able to produce dividing forms of cysts which synthesize cell-bound exopolysaccharide. Initial experiments were conducted on the enrichment of cyst biomass for exopolysaccharide production under batch-fed conditions in a pilot-scale bioreactor, with lactate as the source of carbon and energy. The optimized medium produced significant quantities of exopolysaccharide in a single growth phase, since the production of exopolysaccharide took place during the division of the cysts. The exopolysaccharide layer was extracted from the cysts using a modified trichloroacetic acid method. The biochemical characterization of purified exopolysaccharide was performed by gas chromatography, ultrahigh-resolution mass spectrometry, nuclear magnetic resonance, and Fourier-transform infrared spectrometry. The repeating unit of exopolysaccharide was a decasaccharide consisting of ribose, glucose, rhamnose, galactose, mannose, and glucuronic acid with the ratio 3:2:2:1:1:1, and additional substituents such as acetyl, succinyl, and methyl moieties were also observed as a part of the exopolysaccharide structure. This study contributes to a fundamental understanding of the novel structural features of exopolysaccharide from a dividing form of cysts, and, further, results can be used to study its rheological properties for various industrial applications.


Assuntos
Comamonadaceae , Cistos , Humanos , Cromatografia Gasosa-Espectrometria de Massas , Ramnose , Polissacarídeos Bacterianos/química
3.
Environ Sci Technol ; 50(13): 6892-901, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27243334

RESUMO

Soils act as nanoceria sinks via agricultural spreading and surface waters. Canola plants were grown for one month in soil spiked with nanoceria (1 mg·kg(-1)). To define the role of nanomaterials design on environmental impacts, we studied nanoceria with different sizes (3.5 or 31 nm) and coating (citrate). We measured microbial activities involved in C, N, and P cycling in the rhizosphere and unplanted soil. Bacterial community structure was analyzed in unplanted soil, rhizosphere, and plant roots by 454-pyrosequencing of the 16S rRNA gene. This revealed an impact gradient dependent on nanomaterials design, ranging from decreased microbial enzymatic activities in planted soil to alterations in bacterial community structure in roots. Particle size/aggregation was a key parameter in modulating nanoceria effects on root communities. Citrate coating lowered the impact on microbial enzymatic activities but triggered variability in the bacterial community structure near the plant root. Some nanoceria favored taxa whose closest relatives are hydrocarbon-degrading bacteria and disadvantaged taxa frequently associated in consortia with disease-suppressive activity toward plant pathogens. This work provides a basis to determine outcomes of nanoceria in soil, at a dose close to predicted environmental concentrations, and to design them to minimize these impacts.


Assuntos
Microbiologia do Solo , Solo/química , Microbiota , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera
4.
Microbiome ; 12(1): 1, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38167150

RESUMO

BACKGROUND: The rhizosheath, a cohesive soil layer firmly adhering to plant roots, plays a vital role in facilitating water and mineral uptake. In pearl millet, rhizosheath formation is genetically controlled and influenced by root exudates. Here, we investigated the impact of root exudates on the microbiota composition, interactions, and assembly processes, and rhizosheath structure in pearl millet using four distinct lines with contrasting soil aggregation abilities. RESULTS: Utilizing 16S rRNA gene and ITS metabarcoding for microbiota profiling, coupled with FTICR-MS metabonomic analysis of metabolite composition in distinct plant compartments and root exudates, we revealed substantial disparities in microbial diversity and interaction networks. The ß-NTI analysis highlighted bacterial rhizosphere turnover driven primarily by deterministic processes, showcasing prevalent homogeneous selection in root tissue (RT) and root-adhering soil (RAS). Conversely, fungal communities were more influenced by stochastic processes. In bulk soil assembly, a combination of deterministic and stochastic mechanisms shapes composition, with deterministic factors exerting a more pronounced role. Metabolic profiles across shoots, RT, and RAS in different pearl millet lines mirrored their soil aggregation levels, emphasizing the impact of inherent plant traits on microbiota composition and unique metabolic profiles in RT and exudates. Notably, exclusive presence of antimicrobial compounds, including DIMBOA and H-DIMBOA, emerged in root exudates and RT of low aggregation lines. CONCLUSIONS: This research underscores the pivotal influence of root exudates in shaping the root-associated microbiota composition across pearl millet lines, entwined with their soil aggregation capacities. These findings underscore the interconnectedness of root exudates and microbiota, which jointly shape rhizosheath structure, deepening insights into soil-plant-microbe interactions and ecological processes shaping rhizosphere microbial communities. Deciphering plant-microbe interactions and their contribution to soil aggregation and microbiota dynamics holds promise for the advancement of sustainable agricultural strategies. Video Abstract.


Assuntos
Microbiota , Pennisetum , Pennisetum/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Raízes de Plantas/microbiologia , Solo/química , Plantas/microbiologia , Exsudatos e Transudatos , Microbiologia do Solo , Rizosfera
6.
Front Microbiol ; 14: 1098150, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113232

RESUMO

Over the last 30 years, the description of microbial diversity has been mainly based on culture-independent approaches (metabarcoding and metagenomics) allowing an in-depth analysis of microbial diversity that no other approach allows. Bearing in mind that culture-dependent approaches cannot replace culture-independent approaches, we have improved an original method for isolating strains consisting of "culturing" grains of sand directly on Petri dishes (grain-by-grain method). This method allowed to cultivate up to 10% of the bacteria counted on the surface of grains of the three sites studied in the Great Western Erg in Algeria (Timoudi, Béni Abbès, and Taghit), knowing that on average about 10 bacterial cells colonize each grain. The diversity of culturable bacteria (collection of 290 strains) predicted by 16S rRNA gene sequencing revealed that Arthrobacter subterraneus, Arthrobacter tecti, Pseudarthrobacter phenanthrenivorans, Pseudarthrobacter psychrotolerans, and Massilia agri are the dominant species. The comparison of the culture-dependent and -independent (16S rRNA gene metabarcoding) approaches at the Timoudi site revealed 18 bacterial genera common to both approaches with a relative overestimation of the genera Arthrobacter/Pseudarthrobacter and Kocuria, and a relative underestimation of the genera Blastococcus and Domibacillus by the bacterial culturing approach. The bacterial isolates will allow further study on the mechanisms of tolerance to desiccation, especially in Pseudomonadota (Proteobacteria).

7.
PLoS One ; 18(2): e0267220, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36800363

RESUMO

The western corn rootworm (WCR) Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) remains one of the economically most important pests of maize (Zea mays) due to its adaptive capabilities to pest management options. This includes the ability to develop resistance to some of the commercial pesticidal proteins originating from different strains of Bacillus thuringiensis. Although urgently needed, the discovery of new, environmentally safe agents with new modes of action is a challenge. In this study we report the discovery of a new family of binary pesticidal proteins isolated from several Chryseobacterium species. These novel binary proteins, referred to as GDI0005A and GDI0006A, produced as recombinant proteins, prevent growth and increase mortality of WCR larvae, as does the bacteria. These effects were found both in susceptible and resistant WCR colonies to Cry3Bb1 and Cry34Ab1/Cry35Ab1 (reassigned Gpp34Ab1/Tpp35Ab1). This suggests GDI0005A and GDI0006A may not share the same binding sites as those commercially deployed proteins and thereby possess a new mode of action. This paves the way towards the development of novel biological or biotechnological management solutions urgently needed against rootworms.


Assuntos
Bacillus thuringiensis , Chryseobacterium , Besouros , Praguicidas , Animais , Zea mays/genética , Chryseobacterium/metabolismo , Praguicidas/farmacologia , Endotoxinas/metabolismo , Proteínas de Bactérias/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Besouros/genética , Larva/metabolismo , Bacillus thuringiensis/genética , Controle Biológico de Vetores , Resistência a Inseticidas
8.
Appl Environ Microbiol ; 78(6): 1658-65, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22247157

RESUMO

The plant-beneficial bacterium Pseudomonas brassicacearum forms phenotypic variants in vitro as well as in planta during root colonization under natural conditions. Transcriptome analysis of typical phenotypic variants using microarrays containing coding as well as noncoding DNA fragments showed differential expression of several genes relevant to secondary metabolism and of the small RNA (sRNA) genes rsmX, rsmY, and rsmZ. Naturally occurring mutations in the gacS-gacA system accounted for phenotypic switching, which was characterized by downregulation of antifungal secondary metabolites (2,4-diacetylphloroglucinol and cyanide), indoleacetate, exoenzymes (lipase and protease), and three different N-acyl-homoserine lactone molecules. Moreover, in addition to abrogating these biocontrol traits, gacS and gacA mutations resulted in reduced expression of the type VI secretion machinery, alginate biosynthesis, and biofilm formation. In a gacA mutant, the expression of rsmX was completely abolished, unlike that of rsmY and rsmZ. Overexpression of any of the three sRNAs in the gacA mutant overruled the pleiotropic changes and restored the wild-type phenotypes, suggesting functional redundancy of these sRNAs. In conclusion, our data show that phenotypic switching in P. brassicacearum results from mutations in the gacS-gacA system.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas/fisiologia , RNA Bacteriano/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/metabolismo , Antifúngicos/metabolismo , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/genética , Análise em Microsséries , Fenótipo , Pseudomonas/genética
9.
PLoS Genet ; 5(3): e1000434, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19370165

RESUMO

To better understand adaptation to harsh conditions encountered in hot arid deserts, we report the first complete genome sequence and proteome analysis of a bacterium, Deinococcus deserti VCD115, isolated from Sahara surface sand. Its genome consists of a 2.8-Mb chromosome and three large plasmids of 324 kb, 314 kb, and 396 kb. Accurate primary genome annotation of its 3,455 genes was guided by extensive proteome shotgun analysis. From the large corpus of MS/MS spectra recorded, 1,348 proteins were uncovered and semiquantified by spectral counting. Among the highly detected proteins are several orphans and Deinococcus-specific proteins of unknown function. The alliance of proteomics and genomics high-throughput techniques allowed identification of 15 unpredicted genes and, surprisingly, reversal of incorrectly predicted orientation of 11 genes. Reversal of orientation of two Deinococcus-specific radiation-induced genes, ddrC and ddrH, and identification in D. deserti of supplementary genes involved in manganese import extend our knowledge of the radiotolerance toolbox of Deinococcaceae. Additional genes involved in nutrient import and in DNA repair (i.e., two extra recA, three translesion DNA polymerases, a photolyase) were also identified and found to be expressed under standard growth conditions, and, for these DNA repair genes, after exposure of the cells to UV. The supplementary nutrient import and DNA repair genes are likely important for survival and adaptation of D. deserti to its nutrient-poor, dry, and UV-exposed extreme environment.


Assuntos
Deinococcus/química , Genômica , Proteômica , África do Norte , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Deinococcus/genética , Deinococcus/efeitos da radiação , Clima Desértico , Raios gama , Genoma Bacteriano , Dados de Sequência Molecular , Raios Ultravioleta
10.
Microb Biotechnol ; 15(7): 2083-2096, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35502577

RESUMO

Pseudomonads play crucial roles in plant growth promotion and control of plant diseases. However, under natural conditions, other microorganisms competing for the same nutrient resources in the rhizosphere may exert negative control over their phytobeneficial characteristics. We assessed the expression of phytobeneficial genes involved in biocontrol, biostimulation and iron regulation such as, phlD, hcnA, acdS, and iron-small regulatory RNAs prrF1 and prrF2 in Pseudomonas brassicacearum co-cultivated with three phytopathogenic fungi, and two rhizobacteria in the presence or absence of Brassica napus, and in relation to iron availability. We found that the antifungal activity of P. brassicacearum depends mostly on the production of DAPG and not on HCN whose production is suppressed by fungi. We have also shown that the two-competing bacterial strains modulate the plant growth promotion activity of P. brassicacearum by modifying the expression of phlD, hcnA and acdS according to iron availability. Overall, it allows us to better understand the complexity of the multiple molecular dialogues that take place underground between microorganisms and between plants and its rhizosphere microbiota and to show that synergy in favour of phytobeneficial gene expression may exist between different bacterial species.


Assuntos
Alphaproteobacteria , Microbiologia do Solo , Bactérias/genética , Fungos , Ferro , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Rizosfera
11.
J Bacteriol ; 193(12): 3146, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21515771

RESUMO

To shed light on the genetic equipment of the beneficial plant-associated bacterium Pseudomonas brassicacearum, we sequenced the whole genome of the strain NFM421. Its genome consists of one chromosome equipped with a repertoire of factors beneficial for plant growth. In addition, a complete type III secretion system and two complete type VI secretion systems were identified. We report here the first genome sequence of this species.


Assuntos
Genoma Bacteriano , Raízes de Plantas/microbiologia , Pseudomonas/genética , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Pseudomonas/metabolismo
12.
Microorganisms ; 9(2)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530561

RESUMO

In the beneficial plant root-associated Pseudomonas brassicacearum strain NFM421, the GacS/GacA two-component system positively controls biofilm formation and the production of secondary metabolites through the synthesis of rsmX, rsmY and rsmZ. Here, we evidenced the genetic amplification of Rsm sRNAs by the discovery of a novel 110-nt long sRNA encoding gene, rsmX-2, generated by the duplication of rsmX-1 (formerly rsmX). Like the others rsm genes, its overexpression overrides the gacA mutation. We explored the expression and the stability of rsmX-1, rsmX-2, rsmY and rsmZ encoding genes under rich or nutrient-poor conditions, and showed that their amount is fine-tuned at the transcriptional and more interestingly at the post-transcriptional level. Unlike rsmY and rsmZ, we noticed that the expression of rsmX-1 and rsmX-2 genes was exclusively GacA-dependent. The highest expression level and longest half-life for each sRNA were correlated with the highest ppGpp and cyclic-di-GMP levels and were recorded under nutrient-poor conditions. Together, these data support the view that the Rsm system in P. brassicacearum is likely linked to the stringent response, and seems to be required for bacterial adaptation to nutritional stress.

13.
Sci Total Environ ; 797: 148895, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34346368

RESUMO

With the increasing demand for alternative solutions to replace or optimize the use of synthetic fertilizers and pesticides, the inoculation of bacteria that can contribute to the growth and health of plants (PGPR) is essential. The properties classically sought in PGPR are the production of phytohormones and other growth-promoting molecules, and more rarely the production of exopolysaccharides. We compared the effect of two strains of exopolysaccharide-producing Rhizobium alamii on rapeseed grown in a calcareous silty-clay soil under water stress conditions or not. The effect of factors 'water stress' and 'inoculation' were evaluated on plant growth parameters and the diversity of microbiota associated to root and root-adhering soil compartments. Water stress resulted in a significant decrease in leaf area, shoot biomass and RAS/RT ratio (root-adhering soil/root tissues), as well as overall beta-diversity. Inoculation with R. alamii YAS34 and GBV030 under water-stress conditions produced the same shoot dry biomass compared to uninoculated treatment in absence of water stress, and both strains increased shoot biomass under water-stressed conditions (+7% and +15%, respectively). Only R. alamii GBV030 significantly increased shoot biomass under unstressed or water-stressed conditions compared to the non-inoculated control (+39% and +15%, respectively). Alpha-diversity of the root-associated microbiota after inoculation with R. alamii YAS34 was significantly reduced. Beta-diversity was significantly modified after inoculation with R. alamii GBV030 under unstressed conditions. LEfSe analysis identified characteristic bacterial families, Flavobacteriaceae and Comamonadaceae, in the RT and RAS compartments for the treatment inoculated by R. alamii GBV030 under unstressed conditions, as well as Halomonadaceae (RT) and several species belonging to Actinomycetales (RAS). We showed that R. alamii GBV030 had a PGPR effect on rapeseed growth, increasing its tolerance to water stress, probably involving its capacity to produce exopolysaccharides, and other plant growth-promoting (PGP) traits.


Assuntos
Rhizobium , Água , Desidratação , Humanos , Raízes de Plantas , Microbiologia do Solo
14.
Sci Rep ; 11(1): 11763, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083699

RESUMO

Two-component systems (TCSs) are ubiquitous signaling pathways, typically comprising a sensory histidine kinase (HK) and a response regulator, which communicate via intermolecular kinase-to-receiver domain phosphotransfer. Hybrid HKs constitute non-canonical TCS signaling pathways, with transmitter and receiver domains within a single protein communicating via intramolecular phosphotransfer. Here, we report how evolutionary relationships between hybrid HKs can be used as predictors of potential intermolecular and intramolecular interactions ('phylogenetic promiscuity'). We used domain-swap genes chimeras to investigate the specificity of phosphotransfer within hybrid HKs of the GacS-GacA multikinase network of Pseudomonas brassicacearum. The receiver domain of GacS was replaced with those from nine donor hybrid HKs. Three chimeras with receivers from other hybrid HKs demonstrated correct functioning through complementation of a gacS mutant, which was dependent on strains having a functional gacA. Formation of functional chimeras was predictable on the basis of evolutionary heritage, and raises the possibility that HKs sharing a common ancestor with GacS might remain components of the contemporary GacS network. The results also demonstrate that understanding the evolutionary heritage of signaling domains in sophisticated networks allows their rational rewiring by simple domain transplantation, with implications for the creation of designer networks and inference of functional interactions.


Assuntos
Evolução Biológica , Proteínas Quinases/metabolismo , Transdução de Sinais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fenótipo , Fosforilação , Filogenia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Quinases/genética , Pseudomonas/classificação , Pseudomonas/genética
15.
Sci Total Environ ; 729: 139020, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32498175

RESUMO

Increased global warming, caused by climate change and human activities, will seriously hinder plant development, such as increasing salt concentrations in soils, which will limit water availability for plants. To ensure optimal plant growth under such changing conditions, microorganisms that improve plant growth and health must be integrated into agricultural practices. In the present work, we examined the fate of Vicia faba microbiota structure and interaction network upon inoculation with plant-nodulating rhizobia (Rhizobium leguminosarum RhOF125) and non-nodulating strains (Paenibacillus mucilaginosus BLA7 and Ensifer meliloti RhOL1) in the presence (or absence) of saline stress. Inoculated strains significantly improved plant tolerance to saline stress, suggesting either a direct or indirect effect on the plant response to such stress. To determine the structure of microbiota associated with V. faba, samples of the root-adhering soil (RAS), and the root tissues (RT) of seedlings inoculated (or not) with equal population size of RhOF125, BLA7 and RhOL1 strains and grown in the presence (or absence) of salt, were used to profile the microbial composition by 16S rRNA gene sequencing. The inoculation did not show a significant impact on the composition of the RT microbiota or RAS microbiota. The saline stress shifted the RAS microbiota composition, which correlated with a decrease in Enterobacteriaceae and an increase in Sphingobacterium, Chryseobacterium, Stenotrophomonas, Agrobacterium and Sinorhizobium. When the microbiota of roots and RAS are considered together, the interaction networks for each treatment are quite different and display different key populations involved in community assembly. These findings indicate that upon seed inoculation, community interaction networks rather than their composition may contribute to helping plants to better tolerate environmental stresses. The way microbial populations interfere with each other can have an impact on their functions and thus on their ability to express the genes required to help plants tolerate stresses.


Assuntos
Vicia faba , Bactérias , Humanos , Consórcios Microbianos , Interações Microbianas , Raízes de Plantas , RNA Ribossômico 16S , Microbiologia do Solo
16.
Biochim Biophys Acta ; 1784(7-8): 1050-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18424274

RESUMO

In order to preserve their genome integrity, organisms have developed elaborate tactics for genome protection and repair. The Deinococcus radiodurans bacteria famous for their extraordinary tolerance toward high doses of radiations or long period of desiccation, possess some specific genes with unknown function which are related to their survival in such extreme conditions. Among them, ddrA is an orphan gene specific of Deinococcus genomes. DdrA, the product of this gene was suggested to be a component of the DNA end protection system. Here we provide a three-dimensional reconstruction of the Deinococcus deserti DdrA((1-160)) by electron microscopy. Although not functional in vivo, this truncated protein keeps its DNA binding ability at the wild-type level. DdrA((1-160)) has a complex three-dimensional structure based on a heptameric ring that can self-associate to form a larger molecular weight assembly. We suggest that the complex architecture of DdrA plays a role in the substrate specificity and favors an efficient DNA repair.


Assuntos
Proteínas de Bactérias/química , Deinococcus/efeitos da radiação , Tolerância a Radiação/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/fisiologia , Sequência de Bases , Primers do DNA , Deinococcus/química , Microscopia Eletrônica , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Conformação Proteica , Homologia de Sequência de Aminoácidos
17.
Sci Rep ; 9(1): 16505, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712689

RESUMO

Ramlibacter tataouinensis TTB310, a non-photosynthetic betaproteobacterium isolated from a semi-arid region of southern Tunisia, forms both rods and cysts. Cysts are resistant to desiccation and divide when water and nutrients are available. Rods are motile and capable of dissemination. Due to the strong correlation between sunlight and desiccation, light is probably an important external signal for anticipating desiccating conditions. Six genes encoding potential light sensors were identified in strain TTB310. Two genes encode for bacteriophytochromes, while the four remaining genes encode for putative blue light receptors. We determined the spectral and photochemical properties of the two recombinant bacteriophytochromes RtBphP1 and RtBphP2. In both cases, they act as sensitive red light detectors. Cyst divisions and a complete cyst-rod-cyst cycle are the main processes in darkness, whereas rod divisions predominate in red or far-red light. Mutant phenotypes caused by the inactivation of genes encoding bacteriophytochromes or heme oxygenase clearly show that both bacteriophytochromes are involved in regulating the rod-rod division. This process could favor rapid rod divisions at sunrise, after dew formation but before the progressive onset of desiccation. Our study provides the first evidence of a light-based strategy evolved in a non-photosynthetic bacterium to exploit scarse water in a desert environment.


Assuntos
Ciclo Celular/efeitos da radiação , Comamonadaceae/fisiologia , Comamonadaceae/efeitos da radiação , Metabolismo Energético/efeitos da radiação , Luz , Escuridão , Heme Oxigenase (Desciclizante)/metabolismo , Mutação , Fenótipo , Análise Espectral
18.
FEMS Microbiol Ecol ; 95(3)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30726948

RESUMO

In the rhizosphere, complex and dynamic interactions occur between plants and microbial networks that are primarily mediated by root exudation. Plants exude various metabolites that may influence the rhizosphere microbiota. However, few studies have sought to understand the role of root exudation in shaping the functional capacities of the microbiota. In this study, we aimed to determine the impact of plants on the diversity of active microbiota and their ability to denitrify via root exudates. For that purpose, we grew four plant species, Triticum aestivum, Brassica napus, Medicago truncatula and Arabidopsis thaliana separately in the same soil. We extracted RNA from the root-adhering soil and the root tissues, and we analysed the bacterial diversity by using 16S rRNA metabarcoding. We measured denitrification activity and denitrification gene expression (nirK and nirS) from each root-adhering soil sample and the root tissues using gas chromatography and quantitative PCR, respectively. We demonstrated that plant species shape denitrification activity and modulate the diversity of the active microbiota through root exudation. We observed a positive effect of T. aestivum and A. thaliana on denitrification activity and nirK gene expression on the root systems. Together, our results underscore the potential power of host plants in controlling microbial activities.


Assuntos
Desnitrificação , Microbiota/fisiologia , Plantas/microbiologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Desnitrificação/genética , Interações entre Hospedeiro e Microrganismos , Microbiota/genética , Exsudatos de Plantas , Raízes de Plantas/química , Raízes de Plantas/classificação , Raízes de Plantas/microbiologia , Plantas/química , Plantas/classificação , RNA Ribossômico 16S/genética , Rizosfera , Solo/química
19.
Environ Microbiol ; 10(8): 2150-63, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18507672

RESUMO

Microbial exopolysaccharides (EPSs) play key roles in plant-microbe interactions, such as biofilm formation on plant roots and legume nodulation by rhizobia. Here, we focused on the function of an EPS produced by Rhizobium sp. YAS34 in the colonization and biofilm formation on non-legume plant roots (Arabidopsis thaliana and Brassica napus). Using random transposon mutagenesis, we isolated an EPS-deficient mutant of strain YAS34 impaired in a glycosyltransferase gene (gta). Wild type and mutant strains were tagged with a plasmid-born GFP and, for the first time, the EPS produced by the wild-type strain was seen in the rhizosphere using selective carbohydrate probing with a fluorescent lectin and confocal laser-scanning microscopy. We show for the fist time that Rhizobium forms biofilms on roots of non-legumes, independently of the EPS synthesis. When produced by strain YAS34 wild type, EPS is targeted at specific parts of the plant root system. Nutrient fluctuations, root exudates and bacterial growth phase can account for such a production pattern. The EPS synthesis in Rhizobium sp. YAS34 is not essential for biofilm formation on roots, but is critical to colonization of the basal part of the root system and increasing the stability of root-adhering soil. Thus, in Rhizobium sp. YAS34 and non-legume interactions, microbial EPS is implicated in root-soil interface, root colonization, but not in biofilm formation.


Assuntos
Arabidopsis/microbiologia , Biofilmes , Brassica napus/microbiologia , Polissacarídeos Bacterianos/fisiologia , Rhizobium/metabolismo , Raízes de Plantas/microbiologia
20.
Front Plant Sci ; 9: 1662, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559748

RESUMO

Plant strategies for soil nutrient uptake have the potential to strongly influence plant-microbiota interactions, due to the competition between plants and microorganisms for soil nutrient acquisition and/or conservation. In the present study, we investigate whether these plant strategies could influence rhizosphere microbial activities via root exudation, and contribute to the microbiota diversification of active bacterial communities colonizing the root-adhering soil (RAS) and inhabiting the root tissues. We applied a DNA-based stable isotope probing (DNA-SIP) approach to six grass species distributed along a gradient of plant nutrient resource strategies, from conservative species, characterized by low nitrogen (N) uptake, a long lifespans and low root exudation level, to exploitative species, characterized by high rates of photosynthesis, rapid rates of N uptake and high root exudation level. We analyzed their (i) associated microbiota composition involved in root exudate assimilation and soil organic matter (SOM) degradation by 16S-rRNA-based metabarcoding. (ii) We determine the impact of root exudation level on microbial activities (denitrification and respiration) by gas chromatography. Measurement of microbial activities revealed an increase in denitrification and respiration activities for microbial communities colonizing the RAS of exploitative species. This increase of microbial activities results probably from a higher exudation rate and more diverse metabolites by exploitative plant species. Furthermore, our results demonstrate that plant nutrient resource strategies have a role in shaping active microbiota. We present evidence demonstrating that plant nutrient use strategies shape active microbiota involved in root exudate assimilation and SOM degradation via root exudation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa