Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(24)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817334

RESUMO

Using sensors and electronic systems for characterization of plant traits provides valuable digital inputs to support complex analytical modeling in genetics research. In field applications, frequent sensor deployment enables the study of the dynamics of these traits and their interaction with the environment. This study focused on implementing lidar (light detection and ranging) technology to generate 2D displacement data at high spatial resolution and extract plant architectural parameters, namely canopy height and cover, in a diverse population of 252 maize (Zea mays L.) genotypes. A prime objective was to develop the mechanical and electrical subcomponents for field deployment from a ground vehicle. Data reduction approaches were implemented for efficient same-day post-processing to generate by-plot statistics. The lidar system was successfully deployed six times in a span of 42 days. Lidar data accuracy was validated through independent measurements in a subset of 75 experimental units. Manual and lidar-derived canopy height measurements were compared resulting in root mean square error (RMSE) = 0.068 m and r2 = 0.81. Subsequent genome-wide association study (GWAS) analyses for quantitative trait locus (QTL) identification and comparisons of genetic correlations and heritabilities for manual and lidar-based traits showed statistically significant associations. Low-cost, field-ready lidar of computational simplicity make possible timely phenotyping of diverse populations in multiple environments.

2.
Front Plant Sci ; 9: 507, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868041

RESUMO

Field-based high-throughput phenotyping is an emerging approach to quantify difficult, time-sensitive plant traits in relevant growing conditions. Proximal sensing carts represent an alternative platform to more costly high-clearance tractors for phenotyping dynamic traits in the field. A proximal sensing cart and specifically a deployment protocol, were developed to phenotype traits related to drought tolerance in the field. The cart-sensor package included an infrared thermometer, ultrasonic transducer, multi-spectral reflectance sensor, weather station, and RGB cameras. The cart deployment protocol was evaluated on 35 upland cotton (Gossypium hirsutum L.) entries grown in 2017 at Maricopa, AZ, United States. Experimental plots were grown under well-watered and water-limited conditions using a (0,1) alpha lattice design and evaluated in June and July. Total collection time of the 0.87 hectare field averaged 2 h and 27 min and produced 50.7 MB and 45.7 GB of data from the sensors and RGB cameras, respectively. Canopy temperature, crop water stress index (CWSI), canopy height, normalized difference vegetative index (NDVI), and leaf area index (LAI) differed among entries and showed an interaction with the water regime (p < 0.05). Broad-sense heritability (H2) estimates ranged from 0.097 to 0.574 across all phenotypes and collections. Canopy cover estimated from RGB images increased with counts of established plants (r = 0.747, p = 0.033). Based on the cart-derived phenotypes, three entries were found to have improved drought-adaptive traits compared to a local adapted cultivar. These results indicate that the deployment protocol developed for the cart and sensor package can measure multiple traits rapidly and accurately to characterize complex plant traits under drought conditions.

3.
Funct Plant Biol ; 41(1): 68-79, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32480967

RESUMO

Physiological and developmental traits that vary over time are difficult to phenotype under relevant growing conditions. In this light, we developed a novel system for phenotyping dynamic traits in the field. System performance was evaluated on 25 Pima cotton (Gossypium barbadense L.) cultivars grown in 2011 at Maricopa, Arizona. Field-grown plants were irrigated under well watered and water-limited conditions, with measurements taken at different times on 3 days in July and August. The system carried four sets of sensors to measure canopy height, reflectance and temperature simultaneously on four adjacent rows, enabling the collection of phenotypic data at a rate of 0.84ha h-1. Measurements of canopy height, normalised difference vegetation index and temperature all showed large differences among cultivars and expected interactions of cultivars with water regime and time of day. Broad-sense heritabilities (H2)were highest for canopy height (H2=0.86-0.96), followed by the more environmentally sensitive normalised difference vegetation index (H2=0.28-0.90) and temperature (H2=0.01-0.90) traits. We also found a strong agreement (r2=0.35-0.82) between values obtained by the system, and values from aerial imagery and manual phenotyping approaches. Taken together, these results confirmed the ability of the phenotyping system to measure multiple traits rapidly and accurately.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa