Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(22): 9517-9525, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34729982

RESUMO

The emergence of van der Waals (vdW) magnets has created unprecedented opportunities to manipulate magnetism for advanced spintronics based upon all-vdW heterostructures. Among various vdW magnets, Cr1+δTe2 possesses high temperature ferromagnetism along with possible topological spin textures. As this system can support self-intercalation in the vdW gap, it is crucial to precisely pinpoint the exact intercalation to understand the intrinsic magnetism of the system. Here, we developed an iterative method to determine the self-intercalated structures and show evidence of vdW "superstructures" in individual Cr1+δTe2 nanoplates exhibiting magnetic behaviors distinct from bulk chromium tellurides. Among 26,332 possible configurations, we unambiguously identified the Cr-intercalated structure as 3-fold symmetry broken Cr1.5Te2 segmented by vdW gaps. Moreover, a twisted Cr-intercalated layered structure is observed. The spontaneous formation of twisted vdW "superstructures" not only provides insight into the diverse magnetic properties of intercalated vdW magnets but may also add complementary building blocks to vdW-based spintronics.

2.
ACS Appl Mater Interfaces ; 16(24): 31696-31702, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38857321

RESUMO

We present time-resolved Kerr rotation (TRKR) spectra in thin films of CH3NH3PbI3 (MAPI) hybrid perovskite using a unique picosecond microscopy technique at 4 K having a spatial resolution of 2 µm and temporal resolution of 1 ps, subjected to both an in-plane applied magnetic field up to 700 mT and an electric field up to 104 V/cm. We demonstrate that the obtained TRKR dynamics and spectra are substantially inhomogeneous across the MAPI films with prominent resonances at the exciton energy and interband transition of this compound. From the obtained quantum beating response as a function of magnetic field in the Voigt configuration, we also extract the inhomogeneity of the electron and hole Lande g-values and spin coherence time, T2*. We also report the TRKR dependence on both the applied magnetic field and electric field. From the change in the quantum beating dynamics, we found that T2* substantially decreases upon the application of an electric field. At the same time, from the induced spatial TRKR changes, we show that the electric field induced effects are caused by ion migration in the MAPI films.

3.
ACS Nano ; 14(11): 15256-15266, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33124799

RESUMO

The discovery of atomically thin van der Waals magnets (e.g., CrI3 and Cr2Ge2Te6) has triggered a renaissance in the study of two-dimensional (2D) magnetism. Most of the 2D magnetic compounds discovered so far host only one single magnetic phase unless the system is at a phase boundary. In this work, we report the near degeneracy of magnetic phases in ultrathin chromium telluride (Cr2Te3) layers with strong perpendicular magnetic anisotropy highly desired for stabilizing 2D magnetic order. Single-crystalline Cr2Te3 nanoplates with a trigonal structure (space group P3̅1c) were grown by chemical vapor deposition. The bulk magnetization measurements suggest a ferromagnetic (FM) order with an enhanced perpendicular magnetic anisotropy, as evidenced by a coercive field as large as ∼14 kOe when the field is applied perpendicular to the basal plane of the thin nanoplates. Magneto-optical Kerr effect studies confirm the intrinsic ferromagnetism and characterize the magnetic ordering temperature of individual nanoplates. First-principles density functional theory calculations suggest the near degeneracy of magnetic orderings with a continuously varying canting from the c-axis FM due to their comparable energy scales, explaining the zero-field kink observed in the magnetic hysteresis loops. Our work highlights Cr2Te3 as a promising 2D Ising system to study magnetic phase coexistence and switches for ultracompact information storage and processing.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa