Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pathol ; 256(1): 61-70, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34564861

RESUMO

Cutaneous, ocular, and mucosal melanomas are histologically indistinguishable tumors that are driven by a different spectrum of genetic alterations. With current methods, identification of the site of origin of a melanoma metastasis is challenging. DNA methylation profiling has shown promise for the identification of the site of tumor origin in various settings. Here we explore the DNA methylation landscape of melanomas from different sites and analyze if different melanoma origins can be distinguished by their epigenetic profile. We performed DNA methylation analysis, next generation DNA panel sequencing, and copy number analysis of 82 non-cutaneous and 25 cutaneous melanoma samples. We further analyzed eight normal melanocyte cell culture preparations. DNA methylation analysis separated uveal melanomas from melanomas of other primary sites. Mucosal, conjunctival, and cutaneous melanomas shared a common global DNA methylation profile. Still, we observed location-dependent DNA methylation differences in cancer-related genes, such as low frequencies of RARB (7/63) and CDKN2A promoter methylation (6/63) in mucosal melanomas, or a high frequency of APC promoter methylation in conjunctival melanomas (6/9). Furthermore, all investigated melanomas of the paranasal sinus showed loss of PTEN expression (9/9), mainly caused by promoter methylation. This was less frequently seen in melanomas of other sites (24/98). Copy number analysis revealed recurrent amplifications in mucosal melanomas, including chromosomes 4q, 5p, 11q and 12q. Most melanomas of the oral cavity showed gains of chromosome 5p with TERT amplification (8/10), while 11q amplifications were enriched in melanomas of the nasal cavity (7/16). In summary, mucosal, conjunctival, and cutaneous melanomas show a surprisingly similar global DNA methylation profile and identification of the site of origin by DNA methylation testing is likely not feasible. Still, our study demonstrates tumor location-dependent differences of promoter methylation frequencies in specific cancer-related genes together with tumor site-specific enrichment for specific chromosomal changes and genetic mutations. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Metilação de DNA/genética , Genes Neoplásicos/genética , Melanoma/genética , Neoplasias Cutâneas/genética , Adulto , Neoplasias da Túnica Conjuntiva/genética , Epigênese Genética/genética , Humanos , Melanoma/patologia , Mutação/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neoplasias Cutâneas/patologia , Melanoma Maligno Cutâneo
2.
Int J Infect Dis ; 103: 628-635, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33401036

RESUMO

OBJECTIVES: In coronavirus disease 2019 (COVID-19), the adaptive immune response is of considerable importance, and detailed cellular immune reactions in the hematological system of patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are yet to be clarified. METHODS: This study reports the morphological characterization of both bone marrow and spleen in 11 COVID-19 decedents with respect to findings in the peripheral blood and pulmonary SARS-CoV-2 burden. RESULTS: In the bone marrow, activation and left shift were found in at least 55% of patients, which was mirrored by peripheral anaemia, granulocytic immaturity and multiple thromboembolic events. Signs of sepsis-acquired immunodeficiency were found in the setting of an abscess-forming superinfection of viral COVID-19 pneumonia. Furthermore, a severe B cell loss was observed in the bone marrow and/or spleen in 64% of COVID-19 patients. This was reflected by lymphocytopenia in the peripheral blood. As compared to B cell preservation, B cell loss was associated with a higher pulmonary SARS-CoV-2 burden and only a marginal decrease of of T cell counts. CONCLUSIONS: The results of this study suggest the presence of sepsis-related immunodeficiency in severe COVID-19 pneumonia with superinfection. Furthermore, our findings indicate that lymphocytopenia in COVID-19 is accompanied by B cell depletion in hematopoietic tissue, which might impede the durability of the humoral immune response to SARS-CoV-2.


Assuntos
Linfócitos B/imunologia , Medula Óssea/imunologia , COVID-19/imunologia , Linfopenia/etiologia , SARS-CoV-2 , Sepse/imunologia , Baço/imunologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa