Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Biol Chem ; 300(1): 105485, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992808

RESUMO

EZH2 (Enhancer of Zeste Homolog 2), a subunit of Polycomb Repressive Complex 2 (PRC2), catalyzes the trimethylation of histone H3 at lysine 27 (H3K27me3), which represses expression of genes. It also has PRC2-independent functions, including transcriptional coactivation of oncogenes, and is frequently overexpressed in lung cancers. Clinically, EZH2 inhibition can be achieved with the FDA-approved drug EPZ-6438 (tazemetostat). To realize the full potential of EZH2 blockade, it is critical to understand how cell-cell/cell-matrix interactions present in 3D tissue and cell culture systems influences this blockade in terms of growth-related metabolic functions. Here, we show that EZH2 suppression reduced growth of human lung adenocarcinoma A549 cells in 2D cultures but stimulated growth in 3D cultures. To understand the metabolic underpinnings, we employed [13C6]-glucose stable isotope-resolved metabolomics to determine the effect of EZH2 suppression on metabolic networks in 2D versus 3D A549 cultures. The Krebs cycle, neoribogenesis, γ-aminobutyrate metabolism, and salvage synthesis of purine nucleotides were activated by EZH2 suppression in 3D spheroids but not in 2D cells, consistent with the growth effect. Using simultaneous 2H7-glucose + 13C5,15N2-Gln tracers and EPZ-6438 inhibition of H3 trimethylation, we delineated the effects on the Krebs cycle, γ-aminobutyrate metabolism, gluconeogenesis, and purine salvage to be PRC2-dependent. Furthermore, the growth/metabolic effects differed for mouse Matrigel versus self-produced A549 extracellular matrix. Thus, our findings highlight the importance of the presence and nature of extracellular matrix in studying the function of EZH2 and its inhibitors in cancer cells for modeling the in vivo outcomes.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Reprogramação Metabólica , Humanos , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Reprogramação Metabólica/genética , Complexo Repressor Polycomb 2/antagonistas & inibidores , Complexo Repressor Polycomb 2/genética , Células A549 , Adenocarcinoma de Pulmão/fisiopatologia , Técnicas de Silenciamento de Genes , Glicólise/genética , Ciclo do Ácido Cítrico/genética , Via de Pentose Fosfato/genética , Nucleotídeos de Purina/genética , Regulação Neoplásica da Expressão Gênica
2.
J Biol Chem ; 299(12): 105407, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38152849

RESUMO

Cell proliferation requires metabolic reprogramming to accommodate biosynthesis of new cell components, and similar alterations occur in cancer cells. However, the mechanisms linking the cell cycle machinery to metabolism are not well defined. Cyclin D1, along with its main partner cyclin-dependent kinase 4 (Cdk4), is a pivotal cell cycle regulator and driver oncogene that is overexpressed in many cancers. Here, we examine hepatocyte proliferation to define novel effects of cyclin D1 on biosynthetic metabolism. Metabolomic studies reveal that cyclin D1 broadly promotes biosynthetic pathways including glycolysis, the pentose phosphate pathway, and the purine and pyrimidine nucleotide synthesis in hepatocytes. Proteomic analyses demonstrate that overexpressed cyclin D1 binds to numerous metabolic enzymes including those involved in glycolysis and pyrimidine synthesis. In the glycolysis pathway, cyclin D1 activates aldolase and GAPDH, and these proteins are phosphorylated by cyclin D1/Cdk4 in vitro. De novo pyrimidine synthesis is particularly dependent on cyclin D1. Cyclin D1/Cdk4 phosphorylates the initial enzyme of this pathway, carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), and metabolomic analysis indicates that cyclin D1 depletion markedly reduces the activity of this enzyme. Pharmacologic inhibition of Cdk4 along with the downstream pyrimidine synthesis enzyme dihydroorotate dehydrogenase synergistically inhibits proliferation and survival of hepatocellular carcinoma cells. These studies demonstrate that cyclin D1 promotes a broad network of biosynthetic pathways in hepatocytes, and this model may provide insights into potential metabolic vulnerabilities in cancer cells.


Assuntos
Vias Biossintéticas , Ciclina D1 , Hepatócitos , Ciclina D1/genética , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Hepatócitos/metabolismo , Proteômica , Pirimidinas/biossíntese , Humanos , Animais , Camundongos , Linhagem Celular
3.
Metabolomics ; 20(4): 87, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068202

RESUMO

INTRODUCTION: Stable isotope tracers have been increasingly used in preclinical cancer model systems, including cell culture and mouse xenografts, to probe the altered metabolism of a variety of cancers, such as accelerated glycolysis and glutaminolysis and generation of oncometabolites. Comparatively little has been reported on the fidelity of the different preclinical model systems in recapitulating the aberrant metabolism of tumors. OBJECTIVES: We have been developing several different experimental model systems for systems biochemistry analyses of non-small cell lung cancer (NSCLC1) using patient-derived tissues to evaluate appropriate models for metabolic and phenotypic analyses. METHODS: To address the issue of fidelity, we have carried out a detailed Stable Isotope-Resolved Metabolomics study of freshly resected tissue slices, mouse patient derived xenografts (PDXs), and cells derived from a single patient using both 13C6-glucose and 13C5,15N2-glutamine tracers. RESULTS: Although we found similar glucose metabolism in the three models, glutamine utilization was markedly higher in the isolated cell culture and in cell culture-derived xenografts compared with the primary cancer tissue or direct tissue xenografts (PDX). CONCLUSIONS: This suggests that caution is needed in interpreting cancer biochemistry using patient-derived cancer cells in vitro or in xenografts, even at very early passage, and that direct analysis of patient derived tissue slices provides the optimal model for ex vivo metabolomics. Further research is needed to determine the generality of these observations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Glutamina , Neoplasias Pulmonares , Metabolômica , Glutamina/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Animais , Metabolômica/métodos , Camundongos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Isótopos de Carbono/metabolismo , Fenótipo , Glucose/metabolismo , Isótopos de Nitrogênio/metabolismo
4.
J Immunol ; 209(9): 1674-1690, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150727

RESUMO

Immunomodulatory (IM) metabolic reprogramming in macrophages (Mϕs) is fundamental to immune function. However, limited information is available for human Mϕs, particularly in response plasticity, which is critical to understanding the variable efficacy of immunotherapies in cancer patients. We carried out an in-depth analysis by combining multiplex stable isotope-resolved metabolomics with reversed phase protein array to map the dynamic changes of the IM metabolic network and key protein regulators in four human donors' Mϕs in response to differential polarization and M1 repolarizer ß-glucan (whole glucan particles [WGPs]). These responses were compared with those of WGP-treated ex vivo organotypic tissue cultures (OTCs) of human non-small cell lung cancer. We found consistently enhanced tryptophan catabolism with blocked NAD+ and UTP synthesis in M1-type Mϕs (M1-Mϕs), which was associated with immune activation evidenced by increased release of IL-1ß/CXCL10/IFN-γ/TNF-α and reduced phagocytosis. In M2a-Mϕs, WGP treatment of M2a-Mϕs robustly increased glucose utilization via the glycolysis/oxidative branch of the pentose phosphate pathway while enhancing UDP-N-acetyl-glucosamine turnover and glutamine-fueled gluconeogenesis, which was accompanied by the release of proinflammatory IL-1ß/TNF-α to above M1-Mϕ's levels, anti-inflammatory IL-10 to above M2a-Mϕ's levels, and attenuated phagocytosis. These IM metabolic responses could underlie the opposing effects of WGP, i.e., reverting M2- to M1-type immune functions but also boosting anti-inflammation. Variable reprogrammed Krebs cycle and glutamine-fueled synthesis of UTP in WGP-treated OTCs of human non-small cell lung cancer were observed, reflecting variable M1 repolarization of tumor-associated Mϕs. This was supported by correlation with IL-1ß/TNF-α release and compromised tumor status, making patient-derived OTCs unique models for studying variable immunotherapeutic efficacy in cancer patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , beta-Glucanas , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Glucosamina/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Interleucina-10 , Neoplasias Pulmonares/metabolismo , Macrófagos , NAD/metabolismo , Fagocitose , Triptofano/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Difosfato de Uridina/metabolismo , Uridina Trifosfato/metabolismo , beta-Glucanas/metabolismo
5.
J Biol Chem ; 298(12): 102586, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36223837

RESUMO

Metabolic networks are complex, intersecting, and composed of numerous enzyme-catalyzed biochemical reactions that transfer various molecular moieties among metabolites. Thus, robust reconstruction of metabolic networks requires metabolite moieties to be tracked, which cannot be readily achieved with mass spectrometry (MS) alone. We previously developed an Ion Chromatography-ultrahigh resolution-MS1/data independent-MS2 method to track the simultaneous incorporation of the heavy isotopes 13C and 15N into the moieties of purine/pyrimidine nucleotides in mammalian cells. Ultrahigh resolution-MS1 resolves and counts multiple tracer atoms in intact metabolites, while data independent-tandem MS (MS2) determines isotopic enrichment in their moieties without concern for the numerous mass isotopologue source ions to be fragmented. Together, they enabled rigorous MS-based reconstruction of metabolic networks at specific enzyme levels. We have expanded this approach to trace the labeled atom fate of [13C6]-glucose in 3D A549 spheroids in response to the anticancer agent selenite and that of [13C5,15N2]-glutamine in 2D BEAS-2B cells in response to arsenite transformation. We deduced altered activities of specific enzymes in the Krebs cycle, pentose phosphate pathway, gluconeogenesis, and UDP-GlcNAc synthesis pathways elicited by the stressors. These metabolic details help elucidate the resistance mechanism of 3D versus 2D A549 cultures to selenite and metabolic reprogramming that can mediate the transformation of BEAS-2B cells by arsenite.


Assuntos
Arsenitos , Ácido Selenioso , Arsenitos/farmacologia , Isótopos de Carbono/química , Marcação por Isótopo/métodos , Redes e Vias Metabólicas , Metabolômica/métodos , Espectrometria de Massas em Tandem , Humanos
6.
Nature ; 533(7603): 411-5, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27193687

RESUMO

Obesity and its associated comorbidities (for example, diabetes mellitus and hepatic steatosis) contribute to approximately 2.5 million deaths annually and are among the most prevalent and challenging conditions confronting the medical profession. Neurotensin (NT; also known as NTS), a 13-amino-acid peptide predominantly localized in specialized enteroendocrine cells of the small intestine and released by fat ingestion, facilitates fatty acid translocation in rat intestine, and stimulates the growth of various cancers. The effects of NT are mediated through three known NT receptors (NTR1, 2 and 3; also known as NTSR1, 2, and NTSR3, respectively). Increased fasting plasma levels of pro-NT (a stable NT precursor fragment produced in equimolar amounts relative to NT) are associated with increased risk of diabetes, cardiovascular disease and mortality; however, a role for NT as a causative factor in these diseases is unknown. Here we show that NT-deficient mice demonstrate significantly reduced intestinal fat absorption and are protected from obesity, hepatic steatosis and insulin resistance associated with high fat consumption. We further demonstrate that NT attenuates the activation of AMP-activated protein kinase (AMPK) and stimulates fatty acid absorption in mice and in cultured intestinal cells, and that this occurs through a mechanism involving NTR1 and NTR3 (also known as sortilin). Consistent with the findings in mice, expression of NT in Drosophila midgut enteroendocrine cells results in increased lipid accumulation in the midgut, fat body, and oenocytes (specialized hepatocyte-like cells) and decreased AMPK activation. Remarkably, in humans, we show that both obese and insulin-resistant subjects have elevated plasma concentrations of pro-NT, and in longitudinal studies among non-obese subjects, high levels of pro-NT denote a doubling of the risk of developing obesity later in life. Our findings directly link NT with increased fat absorption and obesity and suggest that NT may provide a prognostic marker of future obesity and a potential target for prevention and treatment.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Neurotensina/metabolismo , Obesidade/induzido quimicamente , Obesidade/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/metabolismo , Células Enteroendócrinas/metabolismo , Ativação Enzimática , Corpo Adiposo/metabolismo , Ácidos Graxos/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/prevenção & controle , Feminino , Humanos , Resistência à Insulina/fisiologia , Mucosa Intestinal/metabolismo , Intestinos/citologia , Metabolismo dos Lipídeos , Masculino , Camundongos , Pessoa de Meia-Idade , Neurotensina/sangue , Neurotensina/deficiência , Neurotensina/genética , Obesidade/sangue , Obesidade/prevenção & controle , Precursores de Proteínas/sangue , Precursores de Proteínas/metabolismo
7.
Anal Chem ; 93(5): 2749-2757, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33482055

RESUMO

The metabolome comprises a complex network of interconnecting enzyme-catalyzed reactions that involve transfers of numerous molecular subunits. Thus, the reconstruction of metabolic networks requires metabolite substructures to be tracked. Subunit tracking can be achieved by tracing stable isotopes through metabolic transformations using NMR and ultrahigh -resolution (UHR)-mass spectrometry (MS). UHR-MS1 readily resolves and counts isotopic labels in metabolites but requires tandem MS to help identify isotopic enrichment in substructures. However, it is challenging to perform chromatography-based UHR-MS1 with its long acquisition time, while acquiring MS2 data on many coeluting labeled isotopologues for each metabolite. We have developed an ion chromatography (IC)-UHR-MS1/data-independent(DI)-HR-MS2 method to trace the fate of 13C atoms from [13C6]-glucose ([13C6]-Glc) in 3D A549 spheroids in response to anticancer selenite and simultaneously 13C/15N atoms from [13C5,15N2]-glutamine ([13C5,15N2]-Gln) in 2D BEAS-2B cells in response to arsenite transformation. This method retains the complete isotopologue distributions of metabolites via UHR-MS1 while simultaneously acquiring substructure label information via DI-MS2. These details in metabolite labeling patterns greatly facilitate rigorous reconstruction of multiple, intersecting metabolic pathways of central metabolism, which are illustrated here for the purine/pyrimidine nucleotide biosynthesis. The pathways reconstructed based on subunit-level isotopologue analysis further reveal specific enzyme-catalyzed reactions that are impacted by selenite or arsenite treatments.


Assuntos
Redes e Vias Metabólicas , Metabolômica , Isótopos de Carbono , Marcação por Isótopo , Isótopos de Nitrogênio
8.
J Biol Chem ; 294(36): 13464-13477, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31337706

RESUMO

Nucleotide synthesis is essential to proliferating cells, but the preferred precursors for de novo biosynthesis are not defined in human cancer tissues. We have employed multiplexed stable isotope-resolved metabolomics to track the metabolism of [13C6]glucose, D2-glycine, [13C2]glycine, and D3-serine into purine nucleotides in freshly resected cancerous and matched noncancerous lung tissues from nonsmall cell lung cancer (NSCLC) patients, and we compared the metabolism with established NSCLC PC9 and A549 cell lines in vitro Surprisingly, [13C6]glucose was the best carbon source for purine synthesis in human NSCLC tissues, in contrast to the noncancerous lung tissues from the same patient, which showed lower mitotic indices and MYC expression. We also observed that D3-Ser was preferentially incorporated into purine rings over D2-glycine in both tissues and cell lines. MYC suppression attenuated [13C6]glucose, D3-serine, and [13C2]glycine incorporation into purines and reduced proliferation in PC9 but not in A549 cells. Using detailed kinetic modeling, we showed that the preferred use of glucose as a carbon source for purine ring synthesis in NSCLC tissues involves cytoplasmic activation/compartmentation of the glucose-to-serine pathway and enhanced reversed one-carbon fluxes that attenuate exogenous serine incorporation into purines. Our findings also indicate that the substrate for de novo nucleotide synthesis differs profoundly between cancer cell lines and fresh human lung cancer tissues; the latter preferred glucose to exogenous serine or glycine but not the former. This distinction in substrate utilization in purine synthesis in human cancer tissues should be considered when targeting one-carbon metabolism for cancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Glicina/biossíntese , Neoplasias Pulmonares/metabolismo , Nucleotídeos de Purina/biossíntese , Serina/biossíntese , Células A549 , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pulmonares/patologia , Metabolômica
9.
Trends Analyt Chem ; 1232020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32483395

RESUMO

Metabolism is a complex network of compartmentalized and coupled chemical reactions, which often involve transfers of substructures of biomolecules, thus requiring metabolite substructures to be tracked. Stable isotope resolved metabolomics (SIRM) enables pathways reconstruction, even among chemically identical metabolites, by tracking the provenance of stable isotope-labeled substructures using NMR and ultrahigh resolution (UHR) MS. The latter can resolve and count isotopic labels in metabolites and can identify isotopic enrichment in substructures when operated in tandem MS mode. However, MS2 is difficult to implement with chromatography-based UHR-MS due to lengthy MS1 acquisition time that is required to obtain the molecular isotopologue count, which is further exacerbated by the numerous isotopologue source ions to fragment. We review here recent developments in tandem MS applications of SIRM to obtain more detailed information about isotopologue distributions in metabolites and their substructures.

10.
Proteomics ; 19(21-22): e1800486, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31298457

RESUMO

Large clinical trials and model systems studies suggest that the chemical form of selenium dictates chemopreventive and chemotherapeutic efficacy. Selenite induces excess ROS production, which mediates autophagy and eventual cell death in non-small cell lung cancer adenocarcinoma A549 cells. As the mechanisms underlying these phenotypic effects are unclear, the clinical relevance of selenite for cancer therapy remains to be determined. The authors' previous stable isotope-resolved metabolomics and gene expression analysis showed that selenite disrupts glycolysis, the Krebs cycle, and polyamine metabolism in A549 cells, potentially through perturbed glutaminolysis, a vital anaplerotic process for proliferation of many cancer cells. Herein, the role of the glutaminolytic enzyme glutaminase 1 (GLS1) in selenite's toxicity in A549 cells and in patient-derived lung cancer tissues is investigated. Using [13 C6 ]-glucose and [13 C5 ,15 N2 ]-glutamine tracers, selenite's action on metabolic networks is determined. Selenite inhibits glutaminolysis and glutathione synthesis by suppressing GLS1 expression, and blocks the Krebs cycle, but transiently activates pyruvate carboxylase activity. Glutamate supplementation partially rescues these anti-proliferative and oxidative stress activities. Similar metabolic perturbations and necrosis are observed in selenite-treated human patients' cancerous lung tissues ex vivo. The results support the hypothesis that GLS1 suppression mediates part of the anti-cancer activity of selenite both in vitro and ex vivo.


Assuntos
Glutaminase/genética , Neoplasias Pulmonares/tratamento farmacológico , Metabolômica , Ácido Selenioso/farmacologia , Células A549 , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Redes e Vias Metabólicas/genética , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
11.
J Biol Chem ; 293(21): 8297-8311, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29523684

RESUMO

Iron-sulfur (Fe-S) clusters are ancient cofactors in cells and participate in diverse biochemical functions, including electron transfer and enzymatic catalysis. Although cell lines derived from individuals carrying mutations in the Fe-S cluster biogenesis pathway or siRNA-mediated knockdown of the Fe-S assembly components provide excellent models for investigating Fe-S cluster formation in mammalian cells, these experimental strategies focus on the consequences of prolonged impairment of Fe-S assembly. Here, we constructed and expressed dominant-negative variants of the primary Fe-S biogenesis scaffold protein iron-sulfur cluster assembly enzyme 2 (ISCU2) in human HEK293 cells. This approach enabled us to study the early metabolic reprogramming associated with loss of Fe-S-containing proteins in several major cellular compartments. Using multiple metabolomics platforms, we observed a ∼12-fold increase in intracellular citrate content in Fe-S-deficient cells, a surge that was due to loss of aconitase activity. The excess citrate was generated from glucose-derived acetyl-CoA, and global analysis of cellular lipids revealed that fatty acid biosynthesis increased markedly relative to cellular proliferation rates in Fe-S-deficient cells. We also observed intracellular lipid droplet accumulation in both acutely Fe-S-deficient cells and iron-starved cells. We conclude that deficient Fe-S biogenesis and acute iron deficiency rapidly increase cellular citrate concentrations, leading to fatty acid synthesis and cytosolic lipid droplet formation. Our findings uncover a potential cause of cellular steatosis in nonadipose tissues.


Assuntos
Reprogramação Celular , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Enxofre/metabolismo , Aconitato Hidratase/metabolismo , Metabolismo Energético , Células HEK293 , Humanos , Redes e Vias Metabólicas
12.
Br J Cancer ; 121(1): 51-64, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31114017

RESUMO

BACKGROUND: Previous studies suggested that the metabolism is differently reprogrammed in the major subtypes of non-small cell lung cancer (NSCLC), squamous cell carcinomas (SCC) and adenocarcinomas (AdC). However, a comprehensive analysis of this differential metabolic reprogramming is lacking. METHODS: Publicly available gene expression data from human lung cancer samples and cell lines were analysed. Stable isotope resolved metabolomics were performed on SCC and ADC tumours in human patients and in freshly resected tumour slices. RESULTS: Analysis of multiple transcriptomics data from human samples identified a SCC-distinguishing enzyme gene signature. SCC tumours from patients infused with [U-13C]-glucose and SCC tissue slices incubated with stable isotope tracers demonstrated differential glucose and glutamine catabolism compared to AdCs or non-cancerous lung, confirming increased activity through pathways defined by the SCC metabolic gene signature. Furthermore, the upregulation of Notch target genes was a distinguishing feature of SCCs, which correlated with the metabolic signature. Notch and MYC-driven murine lung tumours recapitulated the SCC-distinguishing metabolic reprogramming. However, the differences between SCCs and AdCs disappear in established cell lines in 2D culture. CONCLUSIONS: Our data emphasise the importance of studying lung cancer metabolism in vivo. They also highlight potential targets for therapeutic intervention in SCC patients including differentially expressed enzymes that catalyse reactions in glycolysis, glutamine catabolism, serine, nucleotide and glutathione biosynthesis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Receptores Notch/fisiologia , Adenocarcinoma de Pulmão/metabolismo , Animais , Carcinoma de Células Escamosas/metabolismo , Humanos , Camundongos , Proteínas Proto-Oncogênicas c-myc/fisiologia , Transcriptoma , Microambiente Tumoral
13.
Trends Analyt Chem ; 1202019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32523238

RESUMO

There is considerable interest in defining metabolic reprogramming in human diseases, which is recognized as a hallmark of human cancer. Although radiotracers have a long history in specific metabolic studies, stable isotope-enriched precursors coupled with modern high resolution mass spectrometry and NMR spectroscopy have enabled systematic mapping of metabolic networks and fluxes in cells, tissues and living organisms including humans. These analytical platforms are high in information content, are complementary and cross-validating in terms of compound identification, quantification, and isotope labeling pattern analysis of a large number of metabolites simultaneously. Furthermore, new developments in chemoselective derivatization and in vivo spectroscopy enable tracking of labile/low abundance metabolites and metabolic kinetics in real-time. Here we review developments in Stable Isotope Resolved Metabolomics (SIRM) and recent applications in cancer metabolism using a wide variety of stable isotope tracers that probe both broad and specific aspects of cancer metabolism required for proliferation and survival.

14.
J Biol Chem ; 292(28): 11601-11609, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28592486

RESUMO

Metabolic reprogramming is a hallmark of cancer. The changes in metabolism are adaptive to permit proliferation, survival, and eventually metastasis in a harsh environment. Stable isotope-resolved metabolomics (SIRM) is an approach that uses advanced approaches of NMR and mass spectrometry to analyze the fate of individual atoms from stable isotope-enriched precursors to products to deduce metabolic pathways and networks. The approach can be applied to a wide range of biological systems, including human subjects. This review focuses on the applications of SIRM to cancer metabolism and its use in understanding drug actions.


Assuntos
Metabolismo Energético , Metabolômica/métodos , Neoplasias/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Isótopos de Carbono , Reprogramação Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos/tendências , Metabolismo Energético/efeitos dos fármacos , Análise de Fourier , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Metabolômica/tendências , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Isótopos de Nitrogênio
15.
Metabolomics ; 14(10): 125, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30830442

RESUMO

INTRODUCTION: Direct injection Fourier-transform mass spectrometry (FT-MS) allows for the high-throughput and high-resolution detection of thousands of metabolite-associated isotopologues. However, spectral artifacts can generate large numbers of spectral features (peaks) that do not correspond to known compounds. Misassignment of these artifactual features creates interpretive errors and limits our ability to discern the role of representative features within living systems. OBJECTIVES: Our goal is to develop rigorous methods that identify and handle spectral artifacts within the context of high-throughput FT-MS-based metabolomics studies. RESULTS: We observed three types of artifacts unique to FT-MS that we named high peak density (HPD) sites: fuzzy sites, ringing and partial ringing. While ringing artifacts are well-known, fuzzy sites and partial ringing have not been previously well-characterized in the literature. We developed new computational methods based on comparisons of peak density within a spectrum to identify regions of spectra with fuzzy sites. We used these methods to identify and eliminate fuzzy site artifacts in an example dataset of paired cancer and non-cancer lung tissue samples and evaluated the impact of these artifacts on classification accuracy and robustness. CONCLUSION: Our methods robustly identified consistent fuzzy site artifacts in our FT-MS metabolomics spectral data. Without artifact identification and removal, 91.4% classification accuracy was achieved on an example lung cancer dataset; however, these classifiers rely heavily on artifactual features present in fuzzy sites. Proper removal of fuzzy site artifacts produces a more robust classifier based on non-artifactual features, with slightly improved accuracy of 92.4% in our example analysis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Análise de Fourier , Ensaios de Triagem em Larga Escala , Neoplasias Pulmonares/metabolismo , Pulmão/metabolismo , Espectrometria de Massas , Metabolômica , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Humanos , Neoplasias Pulmonares/diagnóstico
16.
Analyst ; 143(4): 999, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29359211

RESUMO

Correction for 'Quantitative profiling of carbonyl metabolites directly in crude biological extracts using chemoselective tagging and nanoESI-FTMS' by Pan Deng, et al., Analyst, 2018, 143, 311-322.

17.
Metab Eng ; 43(Pt B): 125-136, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28163219

RESUMO

Breast cancers vary by their origin and specific set of genetic lesions, which gives rise to distinct phenotypes and differential response to targeted and untargeted chemotherapies. To explore the functional differences of different breast cell types, we performed Stable Isotope Resolved Metabolomics (SIRM) studies of one primary breast (HMEC) and three breast cancer cells (MCF-7, MDAMB-231, and ZR75-1) having distinct genotypes and growth characteristics, using 13C6-glucose, 13C-1+2-glucose, 13C5,15N2-Gln, 13C3-glycerol, and 13C8-octanoate as tracers. These tracers were designed to probe the central energy producing and anabolic pathways (glycolysis, pentose phosphate pathway, Krebs Cycle, glutaminolysis, nucleotide synthesis and lipid turnover). We found that glycolysis was not associated with the rate of breast cancer cell proliferation, glutaminolysis did not support lipid synthesis in primary breast or breast cancer cells, but was a major contributor to pyrimidine ring synthesis in all cell types; anaplerotic pyruvate carboxylation was activated in breast cancer versus primary cells. We also found that glucose metabolism in individual breast cancer cell lines differed between in vitro cultures and tumor xenografts, but not the metabolic distinctions between cell lines, which may reflect the influence of tumor architecture/microenvironment.


Assuntos
Neoplasias da Mama/metabolismo , Marcação por Isótopo/métodos , Redes e Vias Metabólicas , Metabolômica/métodos , Animais , Neoplasias da Mama/patologia , Feminino , Xenoenxertos , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias
18.
Analyst ; 143(1): 311-322, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29192912

RESUMO

The extensive range of chemical structures, wide range of abundances, and chemical instability of metabolites present in the metabolome pose major analytical challenges that are difficult to address with existing technologies. To address these issues, one approach is to target a subset of metabolites that share a functional group, such as ketones and aldehydes, using chemoselective tagging. Here we report a greatly improved chemoselective method for the quantitative analysis of hydrophilic and hydrophobic carbonyl-containing metabolites directly in biological samples. This method is based on direct tissue or cells extraction with simultaneous derivatization of stable and labile carbonylated metabolites using N-[2-(aminooxy)ethyl]-N,N-dimethyl-1-dodecylammonium (QDA) and 13CD3 labeled QDA. We combined innovations of direct quenching of biological sample with frozen derivatization conditions under the catalyst N,N-dimethyl-p-phenylenediamine, which facilitated the formation of oxime stable-isotope ion pairs differing by m/z 4.02188 while minimizing metabolite degradation. The resulting oximes were extracted by HyperSep C8 tips to remove interfering compounds, and the products were detected using nano-electrospray ionization interfaced with a Thermo Fusion mass spectrometer. The quaternary ammonium tagging greatly increased electrospray MS detection sensitivity and the signature ions pairs enabled simple identification of carbonyl compounds. The improved method showed the lower limits of quantification for carbonyl standards to be in the range of 0.20-2 nM, with linearity of R2 > 0.99 over 4 orders of magnitude. We have applied the method to assign 66 carbonyls in mouse tumor tissues, many of which could not be assigned solely by accurate mass and tandem MS. Fourteen of the metabolites were quantified using authentic standards. We also demonstrated the suitability of this method for determining 13C labeled isotopologues of carbonyl metabolites in 13C6-glucose-based stable isotope-resolved metabolomic (SIRM) studies.

19.
J Immunol ; 195(10): 5055-65, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26453753

RESUMO

Tumor-associated macrophages (TAM) with an alternatively activated phenotype have been linked to tumor-elicited inflammation, immunosuppression, and resistance to chemotherapies in cancer, thus representing an attractive target for an effective cancer immunotherapy. In this study, we demonstrate that particulate yeast-derived ß-glucan, a natural polysaccharide compound, converts polarized alternatively activated macrophages or immunosuppressive TAM into a classically activated phenotype with potent immunostimulating activity. This process is associated with macrophage metabolic reprograming with enhanced glycolysis, Krebs cycle, and glutamine utilization. In addition, particulate ß-glucan converts immunosuppressive TAM via the C-type lectin receptor dectin-1-induced spleen tyrosine kinase-Card9-Erk pathway. Further in vivo studies show that oral particulate ß-glucan treatment significantly delays tumor growth, which is associated with in vivo TAM phenotype conversion and enhanced effector T cell activation. Mice injected with particulate ß-glucan-treated TAM mixed with tumor cells have significantly reduced tumor burden with less blood vascular vessels compared with those with TAM plus tumor cell injection. In addition, macrophage depletion significantly reduced the therapeutic efficacy of particulate ß-glucan in tumor-bearing mice. These findings have established a new paradigm for macrophage polarization and immunosuppressive TAM conversion and shed light on the action mode of ß-glucan treatment in cancer.


Assuntos
Polissacarídeos Fúngicos/farmacologia , Lectinas Tipo C/imunologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/imunologia , Neoplasias Experimentais/tratamento farmacológico , Saccharomyces cerevisiae/química , beta-Glucanas/farmacologia , Animais , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/imunologia , Linhagem Celular Tumoral , Polissacarídeos Fúngicos/química , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , beta-Glucanas/química
20.
Magn Reson Chem ; 53(5): 337-43, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25616249

RESUMO

NMR spectra of mixtures of metabolites extracted from cells or tissues are extremely complex, reflecting the large number of compounds that are present over a wide range of concentrations. Although multidimensional NMR can greatly improve resolution as well as improve reliability of compound assignments, lower abundance metabolites often remain hidden. We have developed a carbonyl-selective aminooxy probe that specifically reacts with free keto and aldehyde functions, but not carboxylates. By incorporating (15)N in the aminooxy functional group, (15)N-edited NMR was used to select exclusively those metabolites that contain a free carbonyl function while all other metabolites are rejected. Here, we demonstrate that the chemical shifts of the aminooxy adducts of ketones and aldehydes are very different, which can be used to discriminate between aldoses and ketoses, for example. Utilizing the 2-bond or 3-bond (15)N-(1)H couplings, the (15)N-edited NMR analysis was optimized first with authentic standards and then applied to an extract of the lung adenocarcinoma cell line A549. More than 30 carbonyl-containing compounds at NMR-detectable levels, six of which we have assigned by reference to our database. As the aminooxy probe contains a permanently charged quaternary ammonium group, the adducts are also optimized for detection by mass spectrometry. Thus, this sample preparation technique provides a better link between the two structural determination tools, thereby paving the way to faster and more reliable identification of both known and unknown metabolites directly in crude biological extracts.


Assuntos
Aldeídos/metabolismo , Cetonas/metabolismo , Neoplasias Pulmonares/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Aldeídos/química , Linhagem Celular Tumoral , Humanos , Cetonas/química , Neoplasias Pulmonares/química , Técnicas de Sonda Molecular , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa