Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Genet ; 67(1): 49-56, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33130938

RESUMO

Global methods for assaying translation have greatly improved our understanding of the protein-coding capacity of the genome. In particular, it is now possible to perform genome-wide and condition-specific identification of translation initiation sites through modified ribosome profiling methods that selectively capture initiating ribosomes. Here we discuss our recent study applying such an approach to meiotic and mitotic timepoints in the simple eukaryote, budding yeast, as an example of the surprising diversity of protein products-many of which are non-canonical-that can be revealed by such methods. We also highlight several key challenges in studying non-canonical protein isoforms that have precluded their prior systematic discovery. A growing body of work supports expanded use of empirical protein-coding region identification, which can help relieve some of the limitations and biases inherent to traditional genome annotation approaches. Our study also argues for the adoption of less static views of gene identity and a broader framework for considering the translational capacity of the genome.


Assuntos
Fases de Leitura Aberta/genética , Biossíntese de Proteínas/genética , Ribossomos/genética , Transcriptoma/genética , Regulação Fúngica da Expressão Gênica/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética
2.
Cell Syst ; 15(4): 388-408.e4, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38636458

RESUMO

Genome-wide measurement of ribosome occupancy on mRNAs has enabled empirical identification of translated regions, but high-confidence detection of coding regions that overlap annotated coding regions has remained challenging. Here, we report a sensitive and robust algorithm that revealed the translation of 388 N-terminally truncated proteins in budding yeast-more than 30-fold more than previously known. We extensively experimentally validated them and defined two classes. The first class lacks large portions of the annotated protein and tends to be produced from a truncated transcript. We show that two such cases, Yap5truncation and Pus1truncation, have condition-specific regulation and distinct functions from their respective annotated isoforms. The second class of truncated protein isoforms lacks only a small region of the annotated protein and is less likely to be produced from an alternative transcript isoform. Many display different subcellular localizations than their annotated counterpart, representing a common strategy for dual localization of otherwise functionally identical proteins. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Isoformas de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Genoma , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição de Zíper de Leucina Básica
3.
bioRxiv ; 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37503254

RESUMO

Genome-wide measurements of ribosome occupancy on mRNA transcripts have enabled global empirical identification of translated regions. These approaches have revealed an unexpected diversity of protein products, but high-confidence identification of new coding regions that entirely overlap annotated coding regions - including those that encode truncated protein isoforms - has remained challenging. Here, we develop a sensitive and robust algorithm focused on identifying N-terminally truncated proteins genome-wide, identifying 388 truncated protein isoforms, a more than 30-fold increase in the number known in budding yeast. We perform extensive experimental validation of these truncated proteins and define two general classes. The first set lack large portions of the annotated protein sequence and tend to be produced from a truncated transcript. We show two such cases, Yap5 truncation and Pus1 truncation , to have condition-specific regulation and functions that appear distinct from their respective annotated isoforms. The second set of N-terminally truncated proteins lack only a small region of the annotated protein and are less likely to be regulated by an alternative transcript isoform. Many localize to different subcellular compartments than their annotated counterpart, representing a common strategy for achieving dual localization of otherwise functionally identical proteins.

4.
Cell Syst ; 11(2): 145-160.e5, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32710835

RESUMO

Genomic analyses in budding yeast have helped define the foundational principles of eukaryotic gene expression. However, in the absence of empirical methods for defining coding regions, these analyses have historically excluded specific classes of possible coding regions, such as those initiating at non-AUG start codons. Here, we applied an experimental approach to globally annotate translation initiation sites in yeast and identified 149 genes with alternative N-terminally extended protein isoforms initiating from near-cognate codons upstream of annotated AUG start codons. These isoforms are produced in concert with canonical isoforms and translated with high specificity, resulting from initiation at only a small subset of possible start codons. The non-AUG initiation driving their production is enriched during meiosis and induced by low eIF5A, which is seen in this context. These findings reveal widespread production of non-canonical protein isoforms and unexpected complexity to the rules by which even a simple eukaryotic genome is decoded.


Assuntos
Códon/metabolismo , Iniciação Traducional da Cadeia Peptídica/genética , Biossíntese de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa