Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(17): e2217070120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068239

RESUMO

Studying mechanisms of bacterial biofilm generation is of vital importance to understanding bacterial cell-cell communication, multicellular cohabitation principles, and the higher resilience of microorganisms in a biofilm against antibiotics. Biofilms of the nonpathogenic, gram-positive soil bacterium Bacillus subtilis serve as a model system with biotechnological potential toward plant protection. Its major extracellular matrix protein components are TasA and TapA. The nature of TasA filaments has been of debate, and several forms, amyloidic and non-Thioflavin T-stainable have been observed. Here, we present the three-dimensional structure of TapA and uncover the mechanism of TapA-supported growth of nonamyloidic TasA filaments. By analytical ultracentrifugation and NMR, we demonstrate TapA-dependent acceleration of filament formation from solutions of folded TasA. Solid-state NMR revealed intercalation of the N-terminal TasA peptide segment into subsequent protomers to form a filament composed of ß-sandwich subunits. The secondary structure around the intercalated N-terminal strand ß0 is conserved between filamentous TasA and the Fim and Pap proteins, which form bacterial type I pili, demonstrating such construction principles in a gram-positive organism. Analogous to the chaperones of the chaperone-usher pathway, the role of TapA is in donating its N terminus to serve for TasA folding into an Ig domain-similar filament structure by donor-strand complementation. According to NMR and since the V-set Ig fold of TapA is already complete, its participation within a filament beyond initiation is unlikely. Intriguingly, the most conserved residues in TasA-like proteins (camelysines) of Bacillaceae are located within the protomer interface.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Proteínas de Bactérias/metabolismo , Bacillus subtilis/metabolismo , Espectroscopia de Ressonância Magnética , Estrutura Secundária de Proteína , Chaperonas Moleculares/metabolismo , Biofilmes
2.
J Biomol NMR ; 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39427279

RESUMO

Artificial intelligence (AI) models are revolutionising scientific data analysis but are reliant on large training data sets. While artificial training data can be used in the context of NMR processing and data analysis methods, relating NMR parameters back to protein sequence and structure requires experimental data. In this perspective we examine what the biological NMR community needs to do, in order to store and share its data better so that we can make effective use of AI methods to further our understanding of biological molecules. We argue, first, that the community should be depositing much more of its experimental data. In particular, we should be depositing more spectra and dynamics data. Second, the NMR data deposited needs to capture the full information content required to be able to use and validate it adequately. The NMR Exchange Format (NEF) was designed several years ago to do this. The widespread adoption of NEF combined with a new proposal for dynamics data specifications come at the right time for the community to expand its deposition of data. Third, we highlight the importance of expanding and safeguarding our experimental data repository, the Biological Magnetic Resonance Data Bank (BMRB), not only in the interests of NMR spectroscopists, but biological scientists more widely. With this article we invite others in the biological NMR community to champion increased (possibly mandatory) data deposition, to get involved in designing new NEF specifications, and to advocate on behalf of the BMRB within the wider scientific community.

3.
J Biol Chem ; 295(19): 6689-6699, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32229583

RESUMO

The cell surfaces of many bacteria carry filamentous polypeptides termed adhesins that enable binding to both biotic and abiotic surfaces. Surface adherence is facilitated by the exquisite selectivity of the adhesins for their cognate ligands or receptors and is a key step in niche or host colonization and pathogenicity. Streptococcus gordonii is a primary colonizer of the human oral cavity and an opportunistic pathogen, as well as a leading cause of infective endocarditis in humans. The fibrillar adhesin CshA is an important determinant of S. gordonii adherence, forming peritrichous fibrils on its surface that bind host cells and other microorganisms. CshA possesses a distinctive multidomain architecture comprising an N-terminal target-binding region fused to 17 repeat domains (RDs) that are each ∼100 amino acids long. Here, using structural and biophysical methods, we demonstrate that the intact CshA repeat region (CshA_RD1-17, domains 1-17) forms an extended polymeric monomer in solution. We recombinantly produced a subset of CshA RDs and found that they differ in stability and unfolding behavior. The NMR structure of CshA_RD13 revealed a hitherto unreported all ß-fold, flanked by disordered interdomain linkers. These findings, in tandem with complementary hydrodynamic studies of CshA_RD1-17, indicate that this polypeptide possesses a highly unusual dynamic transitory structure characterized by alternating regions of order and disorder. This architecture provides flexibility for the adhesive tip of the CshA fibril to maintain bacterial attachment that withstands shear forces within the human host. It may also help mitigate deleterious folding events between neighboring RDs that share significant structural identity without compromising mechanical stability.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana/química , Multimerização Proteica , Sequência de Aminoácidos , Modelos Moleculares , Domínios Proteicos , Estrutura Quaternária de Proteína , Sequências Repetitivas de Aminoácidos
4.
J Biol Chem ; 289(9): 5619-34, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24403066

RESUMO

Tumor necrosis factor-stimulated gene-6 (TSG-6) is an inflammation-associated hyaluronan (HA)-binding protein that contributes to remodeling of HA-rich extracellular matrices during inflammatory processes and ovulation. The HA-binding domain of TSG-6 consists solely of a Link module, making it a prototypical member of the superfamily of proteins that interacts with this high molecular weight polysaccharide composed of repeating disaccharides of D-glucuronic acid and N-acetyl-D-glucosamine (GlcNAc). Previously we modeled a complex of the TSG-6 Link module in association with an HA octasaccharide based on the structure of the domain in its HA-bound conformation. Here we have generated a refined model for a HA/Link module complex using novel restraints identified from NMR spectroscopy of the protein in the presence of 10 distinct HA oligosaccharides (from 4- to 8-mers); the model was then tested using unique sugar reagents, i.e. chondroitin/HA hybrid oligomers and an octasaccharide in which a single sugar ring was (13)C-labeled. The HA chain was found to make more extensive contacts with the TSG-6 surface than thought previously, such that a D-glucuronic acid ring makes stacking and ionic interactions with a histidine and lysine, respectively. Importantly, this causes the HA to bend around two faces of the Link module (resembling the way that HA binds to CD44), potentially providing a mechanism for how TSG-6 can reorganize HA during inflammation. However, the HA-binding site defined here may not play a role in TSG-6-mediated transfer of heavy chains from inter-α-inhibitor onto HA, a process known to be essential for ovulation.


Assuntos
Moléculas de Adesão Celular/química , Ácido Hialurônico/química , Modelos Moleculares , Oligossacarídeos/química , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Feminino , Humanos , Receptores de Hialuronatos/química , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/genética , Ácido Hialurônico/metabolismo , Inflamação/genética , Inflamação/metabolismo , Oligossacarídeos/genética , Oligossacarídeos/metabolismo , Ovulação/genética , Ovulação/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
5.
J Biomol NMR ; 62(1): 17-23, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25701262

RESUMO

We demonstrate that (13)C-detected spectra recorded using fast (60 kHz) magic angle spinning on sub-milligram (<10 µmol) quantities of a protonated 7 trans-membrane helix protein (bacteriorhodopsin) in its native lipid environment are comparable in sensitivity and resolution to those recorded using 15-fold larger sample volumes with conventional solid state NMR methodology. We demonstrate the utility of proton-detected measurements which yield narrow (1)H linewidths under these conditions, and that no structural alterations are observed. We propose that these methods will prove useful to gain structural information on membrane proteins with poor availability, which can be studied in their native lipid environments.


Assuntos
Isótopos de Carbono/química , Hidrogênio/química , Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular/métodos , Prótons
6.
Biochem J ; 459(2): 333-44, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24502667

RESUMO

TA (toxin-antitoxin) systems are widely distributed amongst bacteria and are associated with the formation of antibiotic tolerant (persister) cells that may have involvement in chronic and recurrent disease. We show that overexpression of the Burkholderia pseudomallei HicA toxin causes growth arrest and increases the number of persister cells tolerant to ciprofloxacin or ceftazidime. Furthermore, our data show that persistence towards ciprofloxacin or ceftazidime can be differentially modulated depending on the level of induction of HicA expression. Deleting the hicAB locus from B. pseudomallei K96243 significantly reduced persister cell frequencies following exposure to ciprofloxacin, but not ceftazidime. The structure of HicA(H24A) was solved by NMR and forms a dsRBD-like (dsRNA-binding domain-like) fold, composed of a triple-stranded ß-sheet, with two helices packed against one face. The surface of the protein is highly positively charged indicative of an RNA-binding protein and His24 and Gly22 were functionality important residues. This is the first study demonstrating a role for the HicAB system in bacterial persistence and the first structure of a HicA protein that has been experimentally characterized.


Assuntos
Toxinas Bacterianas/metabolismo , Burkholderia pseudomallei/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Burkholderia pseudomallei/citologia , Burkholderia pseudomallei/efeitos dos fármacos , Burkholderia pseudomallei/genética , Ceftazidima/farmacologia , Ciprofloxacina/farmacologia , Clonagem Molecular , Farmacorresistência Bacteriana , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/fisiologia , Testes de Sensibilidade Microbiana , Mutação , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , RNA de Cadeia Dupla
7.
Proc Natl Acad Sci U S A ; 106(36): 15344-9, 2009 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-19706427

RESUMO

Endosomes and endosomal vesicles (EVs) rapidly move along cytoskeletal filaments allowing them to exchange proteins and lipids between different endosomal compartments, lysosomes, the trans-Golgi network (TGN), and the plasma membrane. The precise mechanisms that connect membrane traffic between the TGN and perinuclear endosomal compartments with motor-protein driven transport have largely remained elusive. Here we show that Gadkin (also termed gamma-BAR), a peripheral membrane protein localized to the TGN and to TGN-derived EVs, directly associates with the clathrin adaptor AP-1 and with the motor protein kinesin KIF5, thereby potentially regulating EV dynamics. Gadkin overexpression induced the dispersion of transferrin (Tf)- and Rab4-positive EVs to the cell periphery, whereas KIF5B-depleted cells displayed a perinuclear concentration. Functional experiments suggest that the role of Gadkin as a regulator of endosomal membrane traffic critically depends on complex formation with both AP-1 and KIF5. Our data thus provide a direct molecular link between TGN-derived EVs and the microtubule-based cytoskeleton.


Assuntos
Endossomos/metabolismo , Cinesinas/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Células COS , Chlorocebus aethiops , Cromatografia de Afinidade , Células HeLa , Humanos , Imunoprecipitação , Microscopia de Fluorescência
8.
J Biol Chem ; 285(6): 4074-4086, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19965873

RESUMO

Membrane traffic between the trans-Golgi network (TGN) and endosomes is mediated in part by the assembly of clathrin-AP-1 adaptor complex-coated vesicles. This process involves multiple accessory proteins that directly bind to the ear domain of AP-1gamma via degenerate peptide motifs that conform to the consensus sequence diameterG(P/D/E)(diameter/L/M) (with diameter being a large hydrophobic amino acid). Recently, gamma-BAR (hereafter referred to as Gadkin for reasons explained below) has been identified as a novel AP-1 recruitment factor involved in AP-1-dependent endosomal trafficking of lysosomal enzymes. How precisely Gadkin interacts with membranes and with AP-1gamma has remained unclear. Here we show that Gadkin is an S-palmitoylated peripheral membrane protein that lacks stable tertiary structure. S-Palmitoylation is required for the recruitment of Gadkin to TGN/endosomal membranes but not for binding to AP-1. Furthermore, we identify a novel subtype of AP-1-binding motif within Gadkin that specifically associates with the gamma1-adaptin ear domain. Mutational inactivation of this novel type of motif, either alone or in combination with three more conventional AP-1gamma binding peptides, causes Gadkin to mislocalize to the plasma membrane and interferes with its ability to render AP-1 brefeldin A-resistant, indicating its physiological importance. Our studies thus unravel the molecular basis for Gadkin-mediated AP-1 recruitment to TGN/endosomal membranes and identify a novel subtype of the AP-1-binding motif.


Assuntos
Endossomos/metabolismo , Proteínas de Membrana/metabolismo , Fator de Transcrição AP-1/metabolismo , Rede trans-Golgi/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Células COS , Linhagem Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Dicroísmo Circular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Immunoblotting , Lipoilação , Espectroscopia de Ressonância Magnética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Fator de Transcrição AP-1/genética , Transfecção
9.
J Biomol NMR ; 49(1): 53-60, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21184138

RESUMO

RDCs for the 14 kDa protein hen egg-white lysozyme (HEWL) have been measured in eight different alignment media. The elongated shape and strongly positively charged surface of HEWL appear to limit the protein to four main alignment orientations. Furthermore, low levels of alignment and the protein's interaction with some alignment media increases the experimental error. Together with heterogeneity across the alignment media arising from constraints on temperature, pH and ionic strength for some alignment media, these data are suitable for structure refinement, but not the extraction of dynamic parameters. For an analysis of protein dynamics the data must be obtained with very low errors in at least three or five independent alignment media (depending on the method used) and so far, such data have only been reported for three small 6-8 kDa proteins with identical folds: ubiquitin, GB1 and GB3. Our results suggest that HEWL is likely to be representative of many other medium to large sized proteins commonly studied by solution NMR. Comparisons with over 60 high-resolution crystal structures of HEWL reveal that the highest resolution structures are not necessarily always the best models for the protein structure in solution.


Assuntos
Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Muramidase/química , Conformação Proteica , Soluções/química , Ubiquitina/química
10.
J Biomol NMR ; 51(4): 477-85, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22038621

RESUMO

Well-resolved (2)H-(13)C correlation spectra, reminiscent of (1)H-(13)C correlations, are obtained for perdeuterated ubiquitin and for perdeuterated outer-membrane protein G (OmpG) from E. coli by exploiting the favorable lifetime of (2)H double-quantum (DQ) states. Sufficient signal-to-noise was achieved due to the short deuterium T (1), allowing for high repetition rates and enabling 3D experiments with a (2)H-(13)C transfer step in a reasonable time. Well-resolved 3D (2)H(DQ)-(13)C-(13)C correlations of ubiquitin and OmpG were recorded within 3.5 days each. An essentially complete assignment of (2)H(DQα) shifts and of a substantial fraction of (2)H(DQß) shifts were obtained for ubiquitin. In the case of OmpG, (2)H(DQα) and (2)H(DQß) chemical shifts of a considerable number of threonine, serine and leucine residues were assigned. This approach provides the basis for a general heteronuclear 3D MAS NMR assignment concept utilizing pulse sequences with (2)H(DQ)-(13)C transfer steps and evolution of deuterium double-quantum chemical shifts.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Deutério/metabolismo , Proteínas de Escherichia coli/química , Ressonância Magnética Nuclear Biomolecular/métodos , Porinas/química , Proteínas/química , Ubiquitina/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Carbono/química , Carbono/metabolismo , Deutério/química , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Hidrogênio/química , Hidrogênio/metabolismo , Marcação por Isótopo/métodos , Porinas/metabolismo , Proteínas/metabolismo , Ubiquitina/metabolismo
11.
J Biomol NMR ; 51(4): 437-47, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21953355

RESUMO

Solid-state magic-angle-spinning (MAS) NMR of proteins has undergone many rapid methodological developments in recent years, enabling detailed studies of protein structure, function and dynamics. Software development, however, has not kept pace with these advances and data analysis is mostly performed using tools developed for solution NMR which do not directly address solid-state specific issues. Here we present additions to the CcpNmr Analysis software package which enable easier identification of spinning side bands, straightforward analysis of double quantum spectra, automatic consideration of non-uniform labelling schemes, as well as extension of other existing features to the needs of solid-state MAS data. To underpin this, we have updated and extended the CCPN data model and experiment descriptions to include transfer types and nomenclature appropriate for solid-state NMR experiments, as well as a set of experiment prototypes covering the experiments commonly employed by solid-sate MAS protein NMR spectroscopists. This work not only improves solid-state MAS NMR data analysis but provides a platform for anyone who uses the CCPN data model for programming, data transfer, or data archival involving solid-state MAS NMR data.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Software , Análise de Elementos Finitos , Modelos Químicos , Estatística como Assunto
12.
Proc Natl Acad Sci U S A ; 105(17): 6457-62, 2008 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-18434541

RESUMO

Regulator of G protein signaling (RGS) proteins accelerate GTP hydrolysis by Galpha subunits and thus facilitate termination of signaling initiated by G protein-coupled receptors (GPCRs). RGS proteins hold great promise as disease intervention points, given their signature role as negative regulators of GPCRs-receptors to which the largest fraction of approved medications are currently directed. RGS proteins share a hallmark RGS domain that interacts most avidly with Galpha when in its transition state for GTP hydrolysis; by binding and stabilizing switch regions I and II of Galpha, RGS domain binding consequently accelerates Galpha-mediated GTP hydrolysis. The human genome encodes more than three dozen RGS domain-containing proteins with varied Galpha substrate specificities. To facilitate their exploitation as drug-discovery targets, we have taken a systematic structural biology approach toward cataloging the structural diversity present among RGS domains and identifying molecular determinants of their differential Galpha selectivities. Here, we determined 14 structures derived from NMR and x-ray crystallography of members of the R4, R7, R12, and RZ subfamilies of RGS proteins, including 10 uncomplexed RGS domains and 4 RGS domain/Galpha complexes. Heterogeneity observed in the structural architecture of the RGS domain, as well as in engagement of switch III and the all-helical domain of the Galpha substrate, suggests that unique structural determinants specific to particular RGS protein/Galpha pairings exist and could be used to achieve selective inhibition by small molecules.


Assuntos
Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Proteínas RGS/química , Proteínas RGS/metabolismo , Apoproteínas/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
13.
J Biomol NMR ; 45(1-2): 121-31, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19618277

RESUMO

Backbone (15)N relaxation parameters and (15)N-(1)H(N) residual dipolar couplings (RDCs) have been measured for a variant of human alpha-lactalbumin (alpha-LA) in 4, 6, 8 and 10 M urea. In the alpha-LA variant, the eight cysteine residues in the protein have been replaced by alanines (all-Ala alpha-LA). This protein is a partially folded molten globule at pH 2 and has been shown previously to unfold in a stepwise non-cooperative manner on the addition of urea. (15)N R(2) values in some regions of all-Ala alpha-LA show significant exchange broadening which is reduced as the urea concentration is increased. Experimental RDC data are compared with RDCs predicted from a statistical coil model and with bulkiness, average area buried upon folding and hydrophobicity profiles in order to identify regions of non-random structure. Residues in the regions corresponding to the B, D and C-terminal 3(10) helices in native alpha-LA show R(2) values and RDC data consistent with some non-random structural propensities even at high urea concentrations. Indeed, for residues 101-106 the residual structure persists in 10 M urea and the RDC data suggest that this might include the formation of a turn-like structure. The data presented here allow a detailed characterization of the non-cooperative unfolding of all-Ala alpha-LA at higher concentrations of denaturant and complement previous studies which focused on structural features of the molten globule which is populated at lower concentrations of denaturant.


Assuntos
Lactalbumina/química , Ressonância Magnética Nuclear Biomolecular/métodos , Ureia/química , Alanina/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lactalbumina/metabolismo , Modelos Moleculares , Isótopos de Nitrogênio/química , Desnaturação Proteica , Dobramento de Proteína
14.
J Biomol NMR ; 44(4): 245-60, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19609683

RESUMO

In recent years, solid-state magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR) has been growing into an important technique to study the structure of membrane proteins, amyloid fibrils and other protein preparations which do not form crystals or are insoluble. Currently, a key bottleneck is the assignment process due to the absence of the resolving power of proton chemical shifts. Particularly for large proteins (approximately >150 residues) it is difficult to obtain a full set of resonance assignments. In order to address this problem, we present an assignment method based upon samples prepared using [1,3-13C]- and [2-13C]-glycerol as the sole carbon source in the bacterial growth medium (so-called selectively and extensively labelled protein). Such samples give rise to higher quality spectra than uniformly [13C]-labelled protein samples, and have previously been used to obtain long-range restraints for use in structure calculations. Our method exploits the characteristic cross-peak patterns observed for the different amino acid types in 13C-13C correlation and 3D NCACX and NCOCX spectra. An in-depth analysis of the patterns and how they can be used to aid assignment is presented, using spectra of the chicken alpha-spectrin SH3 domain (62 residues), alphaB-crystallin (175 residues) and outer membrane protein G (OmpG, 281 residues) as examples. Using this procedure, over 90% of the Calpha, Cbeta, C' and N resonances in the core domain of alphaB-crystallin and around 73% in the flanking domains could be assigned (excluding 24 residues at the extreme termini of the protein).


Assuntos
Aminoácidos/química , Proteínas de Membrana/química , Ressonância Magnética Nuclear Biomolecular/métodos , Animais , Proteínas da Membrana Bacteriana Externa/química , Isótopos de Carbono/química , Proteínas de Escherichia coli/química , Marcação por Isótopo , Modelos Moleculares , Porinas/química , Espectrina/química , Cadeia B de alfa-Cristalina/química
15.
J Mol Biol ; 371(3): 669-84, 2007 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-17585936

RESUMO

Tumour necrosis factor-stimulated gene-6 (TSG-6) is a glycosaminoglycan-binding protein expressed during inflammatory and inflammation-like processes. Previously NMR structures were calculated for the Link module of TSG-6 (Link_TSG6) in its free state and when bound to an octasaccharide of hyaluronan (HA(8)). Heparin was found to compete for HA binding even though it interacts at a site that is distinct from the HA-binding surface. Here we present crystallography data on the free protein, and (15)N NMR relaxation data for the uncomplexed and HA(8)-bound forms of Link_TSG6. Although the Link module is comparatively rigid overall, the free protein shows a high degree of mobility in the beta4/beta5 loop and at the Cys47-Cys68 disulfide bond, both of which are regions involved in HA binding. When bound to HA(8), this dynamic behaviour is dampened, but not eliminated, suggesting a degree of dynamic matching between the protein and sugar that may decrease the entropic penalty of complex formation. A further highly dynamic residue is Lys54, which is distant from the HA-binding site, but was previously shown to be involved in heparin binding. When HA is bound, Lys54 becomes less mobile, providing evidence for an allosteric effect linking the HA and heparin-binding sites. A mechanism is suggested involving the beta2-strand and alpha2-helix. The crystal structure of free Link_TSG6 contains five molecules in the asymmetric unit that are highly similar to the NMR structure and support the dynamic behaviour seen near the HA-binding site: they show little or no electron density for the beta4/beta5 loop and display multiple conformations for the Cys47-Cys68 disulfide bond. The crystal structures were used in docking calculations with heparin. An extended interface between a Link_TSG6 dimer and heparin 11-mer was identified that is in excellent agreement with previous mutagenesis and calorimetric data, providing the basis for further investigation of this interaction.


Assuntos
Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Ácido Hialurônico/química , Cristalografia por Raios X , Heparina/química , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína
16.
Prog Nucl Magn Reson Spectrosc ; 106-107: 37-65, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31047601

RESUMO

The prerequisite to structural or functional studies of proteins by NMR is generally the assignment of resonances. Since the first assignment of proteins by solid-state MAS NMR was conducted almost two decades ago, a wide variety of different pulse sequences and methods have been proposed and continue to be developed. Traditionally, a variety of 2D and 3D 13C-detected experiments have been used for the assignment of backbone and side-chain 13C and 15N resonances. These methods have found widespread use across the field. But as the hardware has changed and higher spinning frequencies and magnetic fields are becoming available, the ability to use direct proton detection is opening up a new set of assignment methods based on triple-resonance experiments. This review describes solid-state MAS NMR assignment methods using carbon detection and proton detection at different deuteration levels. The use of different isotopic labelling schemes as an aid to assignment in difficult cases is discussed as well as the increasing number of software packages that support manual and automated resonance assignment.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteínas/química , Animais , Humanos , Espectroscopia de Ressonância Magnética/instrumentação , Conformação Proteica
17.
Elife ; 62017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29244022

RESUMO

The ParB protein forms DNA bridging interactions around parS to condense DNA and earmark the bacterial chromosome for segregation. The molecular mechanism underlying the formation of these ParB networks is unclear. We show here that while the central DNA binding domain is essential for anchoring at parS, this interaction is not required for DNA condensation. Structural analysis of the C-terminal domain reveals a dimer with a lysine-rich surface that binds DNA non-specifically and is essential for DNA condensation in vitro. Mutation of either the dimerisation or the DNA binding interface eliminates ParB-GFP foci formation in vivo. Moreover, the free C-terminal domain can rapidly decondense ParB networks independently of its ability to bind DNA. Our work reveals a dual role for the C-terminal domain of ParB as both a DNA binding and bridging interface, and highlights the dynamic nature of ParB networks in Bacillus subtilis.


Assuntos
Bacillus subtilis/genética , Centrômero/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ligação Proteica , Multimerização Proteica
18.
Nat Commun ; 8(1): 2073, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233991

RESUMO

ß-barrel proteins mediate nutrient uptake in bacteria and serve vital functions in cell signaling and adhesion. For the 14-strand outer membrane protein G of Escherichia coli, opening and closing is pH-dependent. Different roles of the extracellular loops in this process were proposed, and X-ray and solution NMR studies were divergent. Here, we report the structure of outer membrane protein G investigated in bilayers of E. coli lipid extracts by magic-angle-spinning NMR. In total, 1847 inter-residue 1H-1H and 13C-13C distance restraints, 256 torsion angles, but no hydrogen bond restraints are used to calculate the structure. The length of ß-strands is found to vary beyond the membrane boundary, with strands 6-8 being the longest and the extracellular loops 3 and 4 well ordered. The site of barrel closure at strands 1 and 14 is more disordered than most remaining strands, with the flexibility decreasing toward loops 3 and 4. Loop 4 presents a well-defined helix.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Bicamadas Lipídicas/química , Porinas/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Secundária de Proteína
20.
J Mol Biol ; 334(4): 781-91, 2003 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-14636602

RESUMO

Traditionally, proteins have been viewed as a construct based on elements of secondary structure and their arrangement in three-dimensional space. In a departure from this perspective we show that protein structures can be modelled as network systems that exhibit small-world, single-scale, and to some degree, scale-free properties. The phenomenological network concept of degrees of separation is applied to three-dimensional protein structure networks and reveals how amino acid residues can be connected to each other within six degrees of separation. This work also illuminates the unique features of protein networks in comparison to other networks currently studied. Recognising that proteins are networks provides a means of rationalising the robustness in the overall three-dimensional fold of a protein against random mutations and suggests an alternative avenue to investigate the determinants of protein structure, function and folding.


Assuntos
Estrutura Secundária de Proteína , Modelos Moleculares , Modelos Teóricos , Dobramento de Proteína , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa