Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 16(11): 1105-1108, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31527839

RESUMO

Light-sheet microscopy is an ideal technique for imaging large cleared samples; however, the community is still lacking instruments capable of producing volumetric images of centimeter-sized cleared samples with near-isotropic resolution within minutes. Here, we introduce the mesoscale selective plane-illumination microscopy initiative, an open-hardware project for building and operating a light-sheet microscope that addresses these challenges and is compatible with any type of cleared or expanded sample ( www.mesospim.org ).


Assuntos
Microscopia de Fluorescência/instrumentação , Animais , Embrião de Galinha , Microscopia de Fluorescência/métodos , Software
2.
Nat Biotechnol ; 42(1): 65-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36997681

RESUMO

Imaging large, cleared samples requires microscope objectives that combine a large field of view (FOV) with a long working distance (WD) and a high numerical aperture (NA). Ideally, such objectives should be compatible with a wide range of immersion media, which is challenging to achieve with conventional lens-based objective designs. Here we introduce the multi-immersion 'Schmidt objective' consisting of a spherical mirror and an aspherical correction plate as a solution to this problem. We demonstrate that a multi-photon variant of the Schmidt objective is compatible with all homogeneous immersion media and achieves an NA of 1.08 at a refractive index of 1.56, 1.1-mm FOV and 11-mm WD. We highlight its versatility by imaging cleared samples in various media ranging from air and water to benzyl alcohol/benzyl benzoate, dibenzyl ether and ethyl cinnamate and by imaging of neuronal activity in larval zebrafish in vivo. In principle, the concept can be extended to any imaging modality, including wide-field, confocal and light-sheet microscopy.


Assuntos
Telescópios , Animais , Imersão , Microscopia/métodos , Peixe-Zebra
3.
Nat Commun ; 15(1): 2679, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538644

RESUMO

In 2015, we launched the mesoSPIM initiative, an open-source project for making light-sheet microscopy of large cleared tissues more accessible. Meanwhile, the demand for imaging larger samples at higher speed and resolution has increased, requiring major improvements in the capabilities of such microscopes. Here, we introduce the next-generation mesoSPIM ("Benchtop") with a significantly increased field of view, improved resolution, higher throughput, more affordable cost, and simpler assembly compared to the original version. We develop an optical method for testing detection objectives that enables us to select objectives optimal for light-sheet imaging with large-sensor cameras. The improved mesoSPIM achieves high spatial resolution (1.5 µm laterally, 3.3 µm axially) across the entire field of view, magnification up to 20×, and supports sample sizes ranging from sub-mm up to several centimeters while being compatible with multiple clearing techniques. The microscope serves a broad range of applications in neuroscience, developmental biology, pathology, and even physics.


Assuntos
Microscopia , Neurociências , Microscopia/métodos
4.
Commun Biol ; 6(1): 170, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781939

RESUMO

The ability to image human tissue samples in 3D, with both cellular resolution and a large field of view (FOV), can improve fundamental and clinical investigations. Here, we demonstrate the feasibility of light-sheet imaging of ~5 cm3 sized formalin fixed human brain and up to ~7 cm3 sized formalin fixed paraffin embedded (FFPE) prostate cancer samples, processed with the FFPE-MASH protocol. We present a light-sheet microscopy prototype, the cleared-tissue dual view Selective Plane Illumination Microscope (ct-dSPIM), capable of fast 3D high-resolution acquisitions of cm3 scale cleared tissue. We used mosaic scans for fast 3D overviews of entire tissue samples or higher resolution overviews of large ROIs with various speeds: (a) Mosaic 16 (16.4 µm isotropic resolution, ~1.7 h/cm3), (b) Mosaic 4 (4.1 µm isotropic resolution, ~ 5 h/cm3) and (c) Mosaic 0.5 (0.5 µm near isotropic resolution, ~15.8 h/cm3). We could visualise cortical layers and neurons around the border of human brain areas V1&V2, and could demonstrate suitable imaging quality for Gleason score grading in thick prostate cancer samples. We show that ct-dSPIM imaging is an excellent technique to quantitatively assess entire MASH prepared large-scale human tissue samples in 3D, with considerable future clinical potential.


Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Microscopia/métodos , Encéfalo/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Formaldeído
5.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168219

RESUMO

In 2015, we launched the mesoSPIM initiative (www.mesospim.org), an open-source project for making light-sheet microscopy of large cleared tissues more accessible. Meanwhile, the demand for imaging larger samples at higher speed and resolution has increased, requiring major improvements in the capabilities of light-sheet microscopy. Here, we introduce the next-generation mesoSPIM ("Benchtop") with significantly increased field of view, improved resolution, higher throughput, more affordable cost and simpler assembly compared to the original version. We developed a new method for testing objectives, enabling us to select detection objectives optimal for light-sheet imaging with large-sensor sCMOS cameras. The new mesoSPIM achieves high spatial resolution (1.5 µm laterally, 3.3 µm axially) across the entire field of view, a magnification up to 20x, and supports sample sizes ranging from sub-mm up to several centimetres, while being compatible with multiple clearing techniques. The new microscope serves a broad range of applications in neuroscience, developmental biology, and even physics.

6.
Sci Rep ; 10(1): 9950, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561795

RESUMO

Here, we describe a new immersion-based clearing method suitable for optical clearing of thick adult human brain samples while preserving its lipids and lipophilic labels such as 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI). This clearing procedure is simple, easy to implement, and allowed for clearing of 5 mm thick human brain tissue samples within 12 days. Furthermore, we show for the first time the advantageous effect of the Periodate-Lysine-Paraformaldehyde (PLP) fixation as compared to the more commonly used 4% paraformaldehyde (PFA) on clearing performance.


Assuntos
Encéfalo/citologia , Fixação de Tecidos/métodos , Marcadores de Afinidade/química , Animais , Encéfalo/anatomia & histologia , Carbocianinas/química , Corantes Fluorescentes/química , Formaldeído/química , Humanos , Lipídeos/química , Lisina/química , Camundongos , Ácido Periódico/química , Suínos
7.
Sci Rep ; 9(1): 10880, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350519

RESUMO

Optical clearing techniques and light sheet microscopy have transformed fluorescent imaging of rodent brains, and have provided a crucial alternative to traditional confocal or bright field techniques for thin sections. However, clearing and labeling human brain tissue through all cortical layers and significant portions of a cortical area, has so far remained extremely challenging, especially for formalin fixed adult cortical tissue. Here, we present MASH (Multiscale Architectonic Staining of Human cortex): a simple, fast and low-cost cytoarchitectonic labeling approach for optically cleared human cortex samples, which can be applied to large (up to 5 mm thick) formalin fixed adult brain samples. A suite of small-molecule fluorescent nuclear and cytoplasmic dye protocols in combination with new refractive index matching solutions allows deep volume imaging. This greatly reduces time and cost of imaging cytoarchitecture in thick samples and enables classification of cytoarchitectonic layers over the full cortical depth. We demonstrate application of MASH to large archival samples of human visual areas, characterizing cortical architecture in 3D from the scale of cortical areas to that of single cells. In combination with scalable light sheet imaging and data analysis, MASH could open the door to investigation of large human cortical systems at cellular resolution and in the context of their complex 3-dimensional geometry.


Assuntos
Neocórtex/citologia , Óptica e Fotônica/métodos , Coloração e Rotulagem/métodos , Adulto , Humanos , Imageamento Tridimensional , Microscopia Confocal , Microtomia , Neocórtex/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa