Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Biol Reprod ; 110(2): 275-287, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37930247

RESUMO

The timing of puberty onset is reliant on increased gonadotropin-releasing hormone (GnRH). This elicits a corresponding increase in luteinizing hormone (LH) due to a lessening of sensitivity to the inhibitory actions of estradiol (E2). The mechanisms underlying the increase in GnRH release likely involve a subset of neurons within the arcuate (ARC) nucleus of the hypothalamus that contain kisspeptin, neurokinin B (NKB), and dynorphin (KNDy neurons). We aimed to determine if KNDy neurons in female sheep are critical for: timely puberty onset; the LH surge; and the response to an intravenous injection of the neurokinin-3 receptor (NK3R) agonist, senktide. Prepubertal ewes received injections aimed at the ARC containing blank-saporin (control, n = 5) or NK3-saporin (NK3-SAP, n = 6) to ablate neurons expressing NK3R. Blood samples taken 3/week for 65 days following surgery were assessed for progesterone to determine onset of puberty. Control ewes exhibited onset of puberty at 33.2 ± 3.9 days post sampling initiation, whereas 5/6 NK3-SAP treated ewes didn't display an increase in progesterone. After an artificial LH surge protocol, surge amplitude was lower in NK3-SAP ewes. Finally, ewes were treated with senktide to determine if an LH response was elicited. LH pulses were evident in both groups in the absence of injections, but the response to senktide vs saline was similar between groups. These results show that KNDy cells are necessary for timely puberty onset and for full expresson of the LH surge. The occurrence of LH pulses in NK3-SAP treated ewes may indicate a recovery from an apulsatile state.


Assuntos
Núcleo Arqueado do Hipotálamo , Hormônio Luteinizante , Fragmentos de Peptídeos , Substância P/análogos & derivados , Feminino , Animais , Ovinos , Hormônio Luteinizante/farmacologia , Núcleo Arqueado do Hipotálamo/metabolismo , Saporinas/farmacologia , Progesterona/farmacologia , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Neurocinina B/metabolismo , Dinorfinas/farmacologia , Dinorfinas/metabolismo , Kisspeptinas/metabolismo
2.
Biol Reprod ; 105(4): 1056-1067, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34037695

RESUMO

Mechanisms in the brain controlling secretion of gonadotropin hormones in pigs, particularly luteinizing hormone (LH), are poorly understood. Kisspeptin is a potent LH stimulant that is essential for fertility in many species, including pigs. Neurokinin B (NKB) acting through neurokinin 3 receptor (NK3R) is involved in kisspeptin-stimulated LH release, but organization of NKB and NK3R within the porcine hypothalamus is unknown. Hypothalamic tissue from ovariectomized (OVX) gilts was used to determine the distribution of immunoreactive kisspeptin, NKB, and NK3R cells in the arcuate nucleus (ARC). Almost all kisspeptin neurons coexpressed NKB in the porcine ARC. Immunostaining for NK3R was distributed throughout the preoptic area (POA) and in several hypothalamic areas including the periventricular and retrochiasmatic areas but was not detected within the ARC. There was no colocalization of NK3R with gonadotropin-releasing hormone (GnRH), but NK3R-positive fibers in the POA were in close apposition to GnRH neurons. Treating OVX gilts with the progestin altrenogest decreased LH pulse frequency and reduced mean circulating concentrations of LH compared with OVX control gilts (P < 0.01), but the number of kisspeptin and NKB cells in the ARC did not differ between treatments. The neuroanatomical arrangement of kisspeptin, NKB, and NK3R within the porcine hypothalamus confirms they are positioned to stimulate GnRH and LH secretion in gilts, though differences with other species exist. Altrenogest suppression of LH secretion in the OVX gilt does not appear to involve decreased peptide expression of kisspeptin or NKB.


Assuntos
Hipotálamo/metabolismo , Kisspeptinas/genética , Neurocinina B/genética , Progestinas/farmacologia , Receptores da Neurocinina-3/genética , Sus scrofa/genética , Acetato de Trembolona/análogos & derivados , Animais , Feminino , Perfilação da Expressão Gênica/veterinária , Hipotálamo/efeitos dos fármacos , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Receptores da Neurocinina-3/metabolismo , Sus scrofa/metabolismo , Acetato de Trembolona/farmacologia
3.
Am J Physiol Heart Circ Physiol ; 314(5): H1085-H1097, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29451819

RESUMO

While it is known that chronic stress and clinical depression are powerful predictors of poor cardiovascular outcomes, recent clinical evidence has identified correlations between the development of metabolic disease and depressive symptoms, creating a combined condition of severely elevated cardiovascular disease risk. In this study, we used the obese Zucker rat (OZRs) and the unpredictable chronic mild stress (UCMS) model to determine the impact of preexisting metabolic disease on the relationship between chronic stress/depressive symptoms and vascular function. Additionally, we determined the impact of metabolic syndrome on sex-based protection from chronic stress/depressive effects on vascular function in female lean Zucker rats (LZRs). In general, vasodilator reactivity was attenuated under control conditions in OZRs compared with LZRs. Although still impaired, conduit arterial and resistance arteriolar dilator reactivity under control conditions in female OZRs was superior to that in male or ovariectomized (OVX) female OZRs, largely because of better maintenance of vascular nitric oxide and prostacyclin levels. However, imposition of metabolic syndrome in combination with UCMS in OZRs further impaired dilator reactivity in both vessel subtypes to a similarly severe extent and abolished any protective effect in female rats compared with male or OVX female rats. The loss of vascular protection in female OZRs with UCMS was reflected in vasodilator metabolite levels, which closely matched those in male and OVX female OZRs subjected to UCMS. These results suggest that presentation of metabolic disease in combination with depressive symptoms can overwhelm the vasoprotection identified in female rats and, thereby, may reflect a severe impairment to normal endothelial function. NEW & NOTEWORTHY This study addresses the protection from chronic stress- and depression-induced vascular dysfunction identified in female compared with male or ovariectomized female rats. We determined the impact of preexisting metabolic disease, a frequent comorbidity of clinical depression in humans, on that vascular protection. With preexisting metabolic syndrome, female rats lost all protection from chronic stress/depressive symptoms and became phenotypically similar to male and ovariectomized female rats, with comparably poor vasoactive dilator metabolite profiles.


Assuntos
Aorta Torácica/fisiopatologia , Doenças Cardiovasculares/prevenção & controle , Depressão/fisiopatologia , Síndrome Metabólica/fisiopatologia , Artéria Cerebral Média/fisiopatologia , Estresse Psicológico/fisiopatologia , Vasodilatação , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Comportamento Animal , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/psicologia , Doença Crônica , Depressão/metabolismo , Depressão/psicologia , Modelos Animais de Doenças , Feminino , Hormônios Esteroides Gonadais/metabolismo , Masculino , Síndrome Metabólica/metabolismo , Artéria Cerebral Média/efeitos dos fármacos , Artéria Cerebral Média/metabolismo , Ovariectomia , Estresse Oxidativo , Fatores de Proteção , Ratos Zucker , Fatores Sexuais , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia , Vasoconstrição , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
4.
Am J Physiol Heart Circ Physiol ; 314(5): H1070-H1084, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29451821

RESUMO

The increasing prevalence and severity of clinical depression are strongly correlated with vascular disease risk, creating a comorbid condition with poor outcomes but demonstrating a sexual disparity whereby female subjects are at lower risk than male subjects for subsequent cardiovascular events. To determine the potential mechanisms responsible for this protection against stress/depression-induced vasculopathy in female subjects, we exposed male, intact female, and ovariectomized (OVX) female lean Zucker rats to the unpredictable chronic mild stress (UCMS) model for 8 wk and determined depressive symptom severity, vascular reactivity in ex vivo aortic rings and middle cerebral arteries (MCA), and the profile of major metabolites regulating vascular tone. While all groups exhibited severe depressive behaviors from UCMS, severity was significantly greater in female rats than male or OVX female rats. In all groups, endothelium-dependent dilation was depressed in aortic rings and MCAs, although myogenic activation and vascular (MCA) stiffness were not impacted. Higher-resolution results from pharmacological and biochemical assays suggested that vasoactive metabolite profiles were better maintained in female rats with normal gonadal sex steroids than male or OVX female rats, despite increased depressive symptom severity (i.e., higher nitric oxide and prostacyclin and lower H2O2 and thromboxane A2 levels). These results suggest that female rats exhibit more severe depressive behaviors with UCMS but are partially protected from the vasculopathy that afflicts male rats and female rats lacking normal sex hormone profiles. Determining how female sex hormones afford partial vascular protection from chronic stress and depression is a necessary step for addressing the burden of these conditions on cardiovascular health. NEW & NOTEWORTHY This study used a translationally relevant model for chronic stress and elevated depressive symptoms to determine how these factors impact conduit and resistance arteriolar function in otherwise healthy rats. While chronic stress leads to an impaired vascular reactivity associated with elevated oxidant stress, inflammation, and reduced metabolite levels, we demonstrated partial protection from vascular dysfunction in female rats with normal sex hormone profiles compared with male or ovariectomized female rats.


Assuntos
Aorta Torácica/fisiopatologia , Doenças Cardiovasculares/prevenção & controle , Depressão/fisiopatologia , Artéria Cerebral Média/fisiopatologia , Estresse Psicológico/fisiopatologia , Vasodilatação , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Comportamento Animal , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/psicologia , Doença Crônica , Depressão/metabolismo , Depressão/psicologia , Modelos Animais de Doenças , Feminino , Hormônios Esteroides Gonadais/metabolismo , Masculino , Artéria Cerebral Média/efeitos dos fármacos , Artéria Cerebral Média/metabolismo , Ovariectomia , Estresse Oxidativo , Fatores de Proteção , Ratos Zucker , Fatores Sexuais , Estresse Psicológico/metabolismo , Estresse Psicológico/psicologia , Vasoconstrição , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
5.
Reproduction ; 156(3): R83-R99, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29880718

RESUMO

Early work in ewes provided a wealth of information on the physiological regulation of pulsatile gonadotropin-releasing hormone (GnRH) secretion by internal and external inputs. Identification of the neural systems involved, however, was limited by the lack of information on neural mechanisms underlying generation of GnRH pulses. Over the last decade, considerable evidence supported the hypothesis that a group of neurons in the arcuate nucleus that contain kisspeptin, neurokinin B and dynorphin (KNDy neurons) are responsible for synchronizing secretion of GnRH during each pulse in ewes. In this review, we describe our current understanding of the neural systems mediating the actions of ovarian steroids and three external inputs on GnRH pulsatility in light of the hypothesis that KNDy neurons play a key role in GnRH pulse generation. In breeding season adults, estradiol (E2) and progesterone decrease GnRH pulse amplitude and frequency, respectively, by actions on KNDy neurons, with E2 decreasing kisspeptin and progesterone increasing dynorphin release onto GnRH neurons. In pre-pubertal lambs, E2 inhibits GnRH pulse frequency by decreasing kisspeptin and increasing dynorphin release, actions that wane as the lamb matures to allow increased pulsatile GnRH secretion at puberty. Less is known about mediators of undernutrition and stress, although some evidence implicates kisspeptin and dynorphin, respectively, in the inhibition of GnRH pulse frequency by these factors. During the anoestrus, inhibitory photoperiod acting via melatonin activates A15 dopaminergic neurons that innervate KNDy neurons; E2 increases dopamine release from these neurons to inhibit KNDy neurons and suppress the frequency of kisspeptin and GnRH release.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Homeostase/fisiologia , Ovinos/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/fisiologia , Cruzamento , Dinorfinas/fisiologia , Estradiol/farmacologia , Ciclo Estral , Retroalimentação Fisiológica , Feminino , Kisspeptinas/fisiologia , Hormônio Luteinizante/metabolismo , Neurocinina B/fisiologia , Neurônios/fisiologia , Periodicidade , Progesterona/farmacologia , Estações do Ano , Maturidade Sexual/fisiologia
6.
Neuroendocrinology ; 107(3): 218-227, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29929191

RESUMO

BACKGROUND: Neuronal intermediates that communicate estrogen and progesterone feedback to gonadotropin-releasing hormone (GnRH) neurons are essential for modulating reproductive cyclicity. Individually, kisspeptin and nitric oxide (NO) influence GnRH secretion. However, it is possible these 2 neuronal intermediates interact with one another to affect reproductive cyclicity. METHODS: We investigated the neuroanatomical relationship of one isoform of the enzyme that synthesizes NO, neuronal NO synthase (nNOS), to kisspeptin and GnRH in adult female rhesus monkeys and sheep using dual-label immunofluorescence. Additionally, we evaluated if the phase of the reproductive cycle would affect these relationships. RESULTS: Overall, no effect of the stage of cycle was observed for any variable in this study. In the arcuate nucleus (ARC) of sheep, 98.8 ± 3.5% of kisspeptin neurons colocalized with nNOS, and kisspeptin close-contacts were observed onto nNOS neurons. In contrast to ewes, no colocalization was observed between kisspeptin and nNOS in the infundibular ARC of primates, but kisspeptin fibers were apposed to nNOS neurons. In the preoptic area of ewes, 15.0 ± 4.2% of GnRH neurons colocalized with nNOS. In primates, 38.8 ± 10.1% of GnRH neurons in the mediobasal hypothalamus colocalized with nNOS, and GnRH close-contacts were observed onto nNOS neurons in both sheep and primates. CONCLUSION: Although species differences were observed, this work establishes a neuroanatomical framework between nNOS and kisspeptin and nNOS and GnRH in adult female nonhuman primates and sheep.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Hipófise/metabolismo , Animais , Feminino , Macaca mulatta , Área Pré-Óptica/metabolismo , Isoformas de Proteínas/metabolismo , Reprodução/fisiologia , Ovinos
7.
Biol Reprod ; 96(3): 617-634, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28339619

RESUMO

Mechanisms governing the timing of puberty in pigs are poorly understood. A genome-wide association study for age at first estrus in pigs identified candidate genes including neuropeptide FF receptor 2 (NPFFR2), which is a putative receptor for RFamide-related peptides (RFRP). RFRP has been shown to negatively regulate secretion of reproductive hormones from hypothalamic and pituitary tissue of pigs in culture. Here, the porcine NPFFR2 gene was further screened and four potentially functional variants were identified to be associated with age at first estrus in pigs (1,288 gilts). The RFRP neurons in the porcine hypothalamus were localized in the paraventricular and dorsomedial nuclei with RFRP fibers in the lateral hypothalamic area. There were marked changes in expression of NPFF receptors in the anterior pituitary gland and hypothalamus of gilts beginning with the peripubertal period. The hypothesis that NPFF receptor function is related to secretion of luteinizing hormone (LH) in gilts was tested with various NPFF receptor ligands. The NPFF receptor antagonist RF9 stimulated a pulse-like release of LH in prepubertal gilts. The putative NPFF receptor agonist RFRP3 modestly suppressed LH pulses in ovariectomized (OVX) prepubertal gilts. A porcine-specific RFRP2 failed to have an effect on LH secretion in OVX prepubertal gilts despite its high degree of homology to avian gonadotropin-inhibitory hormone. Results indicate that an RFRP system is present in the pig and that NPFFR2 is important for pubertal onset in gilts. It is not clear if this regulation involves major control of LH secretion or another unknown mechanism.


Assuntos
Hipotálamo/metabolismo , Hormônio Luteinizante/metabolismo , Neuropeptídeos/metabolismo , Adeno-Hipófise/metabolismo , Receptores de Neuropeptídeos/metabolismo , Maturidade Sexual , Adamantano/análogos & derivados , Animais , Dipeptídeos , Feminino , Suínos
8.
Adv Exp Med Biol ; 784: 27-62, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23550001

RESUMO

Our understanding of kisspeptin and its actions depends, in part, on a detailed knowledge of the neuroanatomy of the kisspeptin signaling system in the brain. In this chapter, we will review our current knowledge of the distribution of kisspeptin cells, fibers, and receptors in the mammalian brain, including the development, phenotype, and projections of different kisspeptin subpopulations. A fairly consistent picture emerges from this analysis. There are two major groups of kisspeptin cell bodies: a large number in the arcuate nucleus (ARC) and a smaller collection in the rostral periventricular area of the third ventricle (RP3V) of rodents and preoptic area (POA) of non-rodents. Both sets of neurons project to GnRH cell bodies, which contain Kiss1r, and the ARC kisspeptin population also projects to GnRH axons in the median eminence. ARC kisspeptin neurons contain neurokinin B and dynorphin, while a variable percentage of those cells in the RP3V of rodents contain galanin and/or dopamine. Neurokinin B and dynorphin have been postulated to contribute to the control of GnRH pulses and sex steroid negative feedback, while the role of galanin and dopamine in rostral kisspeptin neurons is not entirely clear. Kisspeptin neurons, fibers, and Kiss1r are found in other areas, including widespread areas outside the hypothalamus, but their physiological role(s) in these regions remains to be determined.


Assuntos
Núcleo Arqueado do Hipotálamo/embriologia , Kisspeptinas/metabolismo , Área Pré-Óptica/embriologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Terceiro Ventrículo/embriologia , Animais , Núcleo Arqueado do Hipotálamo/anatomia & histologia , Axônios/metabolismo , Dinorfinas/metabolismo , Galanina/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Neurocinina B/metabolismo , Área Pré-Óptica/anatomia & histologia , Receptores de Kisspeptina-1 , Terceiro Ventrículo/anatomia & histologia
9.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38035762

RESUMO

Voluntary feed intake is insufficient to meet the nutrient demands associated with late pregnancy in prolific ewes and early lactation in high-yielding dairy cows. Under these conditions, peripheral signals such as growth hormone and ceramides trigger adaptations aimed at preserving metabolic well-being. Recent work in rodents has shown that the central nervous system-melanocortin (CNS-MC) system, consisting of alpha-melanocyte-stimulating hormone (α-MSH) and agouti-related peptide (AGRP) acting respectively as agonist and antagonist on central MC receptors, contributes to the regulation of some of the same adaptations. To assess the effects of the CNC-MC on peripheral adaptations in ruminants, ewes were implanted with an intracerebroventricular cannula in the third ventricle and infused over days with artificial cerebrospinal fluid (aCSF), the α-MSH analog melanotan-I (MTI), or AGRP. Infusion of MTI at 0.03 nmol/h reduced intake, expressed as a fold of maintenance energy requirement (M), from 1.8 to 1.1 M (P < 0.0001), whereas AGRP at 0.3 nmol/h increased intake from 1.8 to 2.0 M (P < 0.01); these doses were used in all subsequent experiments. To assess the effect of MTI on plasma variables, sheep were fed ad libitum and infused with aCSF or MTI or pair-fed to MTI-treated sheep and infused with aCSF (aCSFPF). Feed intake of the MTI and aCSFPF groups was 40% lower than the aCSF group (P < 0.0001). MTI increased plasma triiodothyronine and thyroxine in an intake-independent manner (P < 0.05 or less) but was devoid of effects on plasma glucose, insulin, and cortisol. None of these variables were altered by AGRP infusion in sheep fed at a fixed intake of 1.6 M. To assess the effect of CNS-MC activation on insulin action, ewes were infused with aCSF or MTI over the last 3 d of a 14-d period when energy intake was limited to 0.3 M and studied under basal conditions and during hyperinsulinemic-euglycemic clamps. MTI had no effect on plasma glucose, plasma insulin, or glucose entry rate under basal conditions but blunted the ability of insulin to inhibit endogenous glucose production during hyperinsulinemic-euglycemic clamps (P < 0.0001). Finally, MTI tended to reduce plasma leptin in sheep fed at 0.3 M (P < 0.08), and this effect became significant at 0.6 M (P < 0.05); MTI had no effect on plasma adiponectin irrespective of feeding level. These data suggest a role for the CNC-MC in regulating metabolic efficiency and peripheral insulin action.


Highly productive ruminants face short-term nutritional deficits during demanding phases of their life cycle. They remain productive and healthy during these periods through a series of metabolic adaptations. Current models in ruminant biology attribute the coordination of these adaptations to circulating hormones and bioactive metabolites but have not considered the possibility that the central nervous system (CNS) is also involved. The latter appears likely given recent work in rodents implicating the CNS-melanocortin system in the regulation of some of these adaptations. To test this possibility, mature ewes were surgically implanted with a cannula accessing the brain allowing chronic infusion of melanocortins, and used in experiments assessing peripheral effects. These experiments showed that the CNS-melanocortin system regulates the circulating concentrations of some metabolic hormones as well as the ability of insulin to regulate glucose production. Overall, these studies suggest a role for the CNS-melanocortin system in regulating metabolic adaptations in ruminants.


Assuntos
Melanocortinas , alfa-MSH , Bovinos , Feminino , Ovinos , Animais , Gravidez , Melanocortinas/metabolismo , Melanocortinas/farmacologia , alfa-MSH/farmacologia , Proteína Relacionada com Agouti/farmacologia , Glicemia , Leptina , Insulina , Ingestão de Alimentos
10.
Peptides ; 164: 171005, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36990389

RESUMO

This review considers three aspects of recent work on the role of KNDy neurons in GnRH pulse generation in ruminants. First, work on basic mechanisms of pulse generation includes several tests of this hypothesis, all of which support it, and evidence that Kiss1r-containing neurons form a positive feedback circuit with the KNDy neural network that strengthen the activity of this network. The second section on pathways mediating external inputs focuses on the influence of nutrition and photoperiod, and describes the evidence supporting roles for proopiomelanocortin (POMC) and agouti-related peptide (AgRP) afferents to KNDy cells in each of these. Finally, we review studies exploring the potential applications of manipulating signaling by kisspeptin, and the other KNDy peptides, to control reproductive function in domestic animals and conclude that, although these approaches show some promise, they do not have major advantages over current practices at this time.


Assuntos
Núcleo Arqueado do Hipotálamo , Hormônio Liberador de Gonadotropina , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Dinorfinas/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Ruminantes/metabolismo , Kisspeptinas/metabolismo
11.
Endocrinology ; 164(11)2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37776515

RESUMO

The current model for the synchronization of GnRH neural activity driving GnRH and LH pulses proposes that a set of arcuate (ARC) neurons that contain kisspeptin, neurokinin B, and dynorphin (KNDy neurons) is the GnRH pulse generator. This study tested the functional role of ovine KNDy neurons in pulse generation and explored the roles of nearby Kiss1 receptor (Kiss1R)-containing cells using lesions produced with saporin (SAP) conjugates. Injection of NK3-SAP ablated over 90% of the KNDy cells, while Kiss-SAP (saporin conjugated to kisspeptin-54) lesioned about two-thirds of the Kiss1R population without affecting KNDy or GnRH cell number. Both lesions produced a dramatic decrease in LH pulse amplitude but had different effects on LH pulse patterns. NK3-SAP increased interpulse interval, but Kiss-SAP did not. In contrast, Kiss-SAP disrupted the regular hourly occurrence of LH pulses, but NK3-SAP did not. Because Kiss1R is not expressed in KNDy cells, HiPlex RNAScope was used to assess the colocalization of 8 neurotransmitters and 3 receptors in ARC Kiss1R-containing cells. Kiss1R cells primarily contained transcript markers for GABA (68%), glutamate (28%), ESR1 (estrogen receptor-α) mRNA, and OPRK1 (kappa opioid receptor) mRNA. These data support the conclusion that KNDy neurons are essential for GnRH pulses in ewes, whereas ARC Kiss1R cells are not but do maintain the amplitude and regularity of GnRH pulses. We thus propose that in sheep, ARC Kiss1R neurons form part of a positive feedback circuit that reinforces the activity of the KNDy neural network, with GABA or glutamate likely being involved.


Assuntos
Núcleo Arqueado do Hipotálamo , Kisspeptinas , Hormônio Luteinizante , Neurônios , Animais , Feminino , Núcleo Arqueado do Hipotálamo/metabolismo , Dinorfinas/metabolismo , Ácido gama-Aminobutírico , Glutamatos , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Receptores de Kisspeptina-1/genética , RNA Mensageiro , Saporinas , Ovinos , Hormônio Luteinizante/metabolismo
12.
J Neuroendocrinol ; 34(6): e13135, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35579068

RESUMO

Undernutrition limits reproduction through inhibition of gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) secretion. Because KNDy neurons coexpress neuropeptides that play stimulatory (kisspeptin and neurokinin B [NKB]) and inhibitory (dynorphin) roles in pulsatile GnRH/LH release, we hypothesized that undernutrition would inhibit kisspeptin and NKB expression at the same time as increasing dynorphin expression. Fifteen ovariectomized lambs were either fed to maintain pre-study body weight (controls) or feed-restricted to lose 20% of pre-study body weight (FR) over 13 weeks. Blood samples were collected and plasma from weeks 0 and 13 were assessed for LH by radioimmunoassay. At week 13, animals were killed, and brain tissue was processed for assessment of KNDy peptide mRNA or protein expression. Mean LH and LH pulse amplitude were lower in FR lambs compared to controls. We observed lower mRNA abundance for kisspeptin within KNDy neurons of FR lambs compared to controls with no significant change in mRNA for NKB or dynorphin. We also observed that FR lambs had fewer numbers of arcuate nucleus kisspeptin and NKB perikarya compared to controls. These findings support the idea that KNDy neurons are important for regulating reproduction during undernutrition in female sheep.


Assuntos
Desnutrição , Neurocinina B , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Peso Corporal , Dinorfinas/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Desnutrição/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Ovinos
13.
Biol Reprod ; 85(5): 1057-65, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21816852

RESUMO

Photoperiod determines the timing of reproductive activity in many species, yet the neural pathways whereby day length is transduced to a signal influencing gonadotropin-releasing hormone (GnRH) release are not fully understood. Physical lesions of the lateral preoptic area (lPOA)/rostral anterior hypothalamic area (rAHA) in female sheep extend the period of estrous cyclicity during inhibitory photoperiods. In the present study we sought to determine whether destroying only neurons and not fibers of passage in this area would lead to similar resistance to photosuppression. Additionally, neural tract-tracing was used to map connectivity between the lPOA/rAHA and other hypothalamic areas implicated in photoperiodic regulation of reproduction. Progesterone secretion was monitored in six sheep to determine estrous cycles for 90 days during a short-day (permissive) photoperiod. Three sheep then received bilateral injections of the excitotoxic glutamate analog, n-methyl-aspartic acid, directed toward the lPOA/rAHA, whereas three others served as controls. All were then exposed to a long-day (suppressive) photoperiod for 120 days. Control sheep ceased cycling at 40 ± 10 days (mean ± SEM), whereas lesioned sheep continued cycling through the end of the study. The results of the tract-tracing study revealed both afferent and efferent projections to the medial POA, retrochiasmatic area, arcuate nucleus, and premammillary region. Furthermore, close proximal associations with GnRH neurons from efferent projections were observed. We conclude that neurons located within the lPOA/rAHA are important for timing cessation of estrous cycles during photosuppression and that this area communicates directly with GnRH neurons and other hypothalamic areas involved in the photoperiodic regulation of reproduction.


Assuntos
Ciclo Estral/fisiologia , Hipotálamo Anterior/fisiologia , Neurônios/fisiologia , Fotoperíodo , Área Pré-Óptica/fisiologia , Ovinos/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/fisiologia , Feminino , Hormônio Liberador de Gonadotropina/fisiologia , Hipotálamo Anterior/citologia , Modelos Animais , Neurônios/citologia , Área Pré-Óptica/citologia , Fatores de Tempo
14.
Nat Med ; 10(5): 524-9, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15077108

RESUMO

Adiponectin (ADP) is an adipocyte hormone involved in glucose and lipid metabolism. We detected a rise in ADP in cerebrospinal fluid after intravenous (i.v.) injection, consistent with brain transport. In contrast to leptin, intracerebroventricular (i.c.v.) administration of ADP decreased body weight mainly by stimulating energy expenditure. Full-length ADP, mutant ADP with Cys39 replaced with serine, and globular ADP were effective, whereas the collagenous tail fragment was not. Lep(ob/ob) mice were especially sensitive to i.c.v. and systemic ADP, which resulted in increased thermogenesis, weight loss and reduction in serum glucose and lipid levels. ADP also potentiated the effect of leptin on thermogenesis and lipid levels. While both hormones increased expression of hypothalamic corticotropin-releasing hormone (CRH), ADP had no substantial effect on other neuropeptide targets of leptin. In addition, ADP induced distinct Fos immunoreactivity. Agouti (A(y)/a) mice did not respond to ADP or leptin, indicating the melanocortin pathway may be a common target. These results show that ADP has unique central effects on energy homeostasis.


Assuntos
Peso Corporal/fisiologia , Encéfalo/fisiologia , Proteínas/fisiologia , Adiponectina , Proteína Agouti Sinalizadora , Animais , Peso Corporal/efeitos dos fármacos , Sinergismo Farmacológico , Metabolismo Energético/efeitos dos fármacos , Injeções Intraventriculares , Peptídeos e Proteínas de Sinalização Intercelular/genética , Leptina/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Obesos , Proteínas/administração & dosagem , Proteínas Recombinantes/administração & dosagem
15.
J Neuroendocrinol ; 33(3): e12945, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33713519

RESUMO

Neurones in the arcuate nucleus co-expressing kisspeptin, neurokinin B (NKB) and dynorphin (KNDy) play a critical role in the control of gonadotrophin-releasing hormone (GnRH) and luteinising hormone (LH) secretion. In sheep, KNDy neurones mediate both steroid-negative- and -positive-feedback during pulsatile and preovulatory surge secretions of GnRH/LH, respectively. In addition, KNDy neurones receive glutamatergic inputs expressing vGlut2, a glutamate transporter that serves as a marker for those terminals, from both KNDy neurones and other populations of glutamatergic neurones. Previous work reported higher numbers of vGlut2-positive axonal inputs onto KNDy neurones during the LH surge than in luteal phase ewes. In the present study, we further examined the effects of the ovarian steroids progesterone (P) and oestradiol (E2 ) on glutamatergic inputs to KNDy neurones. Ovariectomised (OVX) ewes received either no further treatment (OVX) or steroid treatments that mimicked the luteal phase (low E2  + P), and early (low E2 ) or late follicular (high E2 ) phases of the oestrous cycle (n = 4 or 5 per group). Brain sections were processed for triple-label immunofluorescent detection of NKB/vGlut2/synaptophysin and analysed using confocal microscopy. We found higher numbers of vGlut2 inputs onto KNDy neurones in high E2 compared to the other three treatment groups. These results suggest that synaptic plasticity of glutamatergic inputs onto KNDy neurones during the ovine follicular phase depend on increasing levels of E2 required for the preovulatory GnRH/surge. These synaptic changes likely contribute to the positive-feedback action of oestrogen on GnRH/LH secretion and thus the generation of the preovulatory surge in the sheep.


Assuntos
Dinorfinas/fisiologia , Estradiol/fisiologia , Fase Folicular/fisiologia , Glutamatos/fisiologia , Kisspeptinas/fisiologia , Neurocinina B/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Estradiol/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/sangue , Fase Luteal/efeitos dos fármacos , Hormônio Luteinizante/sangue , Ovariectomia , Ovinos , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
16.
Biology (Basel) ; 10(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34681086

RESUMO

The neural mechanisms underlying increases in gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion that drive puberty onset are unknown. Neurons coexpressing kisspeptin, neurokinin B (NKB), and dynorphin, i.e., KNDy neurons, are important as kisspeptin and NKB are stimulatory, and dynorphin inhibitory, to GnRH secretion. Given this, we hypothesized that kisspeptin and NKB expression would increase, but that dynorphin expression would decrease, with puberty. We collected blood and hypothalamic tissue from ovariectomized lambs implanted with estradiol at five, six, seven, eight (puberty), and ten months of age. Mean LH values and LH pulse frequency were the lowest at five to seven months, intermediate at eight months, and highest at ten months. Kisspeptin and NKB immunopositive cell numbers did not change with age. Numbers of cells expressing mRNA for kisspeptin, NKB, or dynorphin were similar at five, eight, and ten months of age. Age did not affect mRNA expression per cell for kisspeptin or NKB, but dynorphin mRNA expression per cell was elevated at ten months versus five months. Thus, neither KNDy protein nor mRNA expression changed in a predictable manner during pubertal development. These data raise the possibility that KNDy neurons, while critical, may await other inputs for the initiation of puberty.

17.
Eur J Neurosci ; 32(12): 2152-64, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21143669

RESUMO

Seasonal reproduction represents a naturally occurring example of functional plasticity in the adult brain as it reflects changes in neuroendocrine pathways controlling gonadotropin-releasing hormone (GnRH) secretion and, in particular, the responsiveness of GnRH neurons to estradiol negative feedback. Structural plasticity within this neural circuitry may, in part, be responsible for seasonal switches in the negative feedback control of GnRH secretion that underlie annual reproductive transitions. We review evidence for structural changes in the circuitry responsible for seasonal inhibition of GnRH secretion in sheep. These include changes in synaptic inputs onto GnRH neurons, as well as onto dopamine neurons in the A15 cell group, a nucleus that plays a key role in estradiol negative feedback. We also present preliminary data suggesting a role for neurotrophins and neurotrophin receptors as an early mechanistic step in the plasticity that accompanies seasonal reproductive transitions in sheep. Finally, we review recent evidence suggesting that kisspeptin cells of the arcuate nucleus constitute a critical intermediary in the control of seasonal reproduction. Although a majority of the data for a role of neuronal plasticity in seasonal reproduction has come from the sheep model, the players and principles are likely to have relevance for reproduction in a wide variety of vertebrates, including humans, and in both health and disease.


Assuntos
Plasticidade Neuronal/fisiologia , Reprodução/fisiologia , Estações do Ano , Ovinos/fisiologia , Animais , Estradiol/metabolismo , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Hormônios Tireóideos/metabolismo
18.
J Neuroendocrinol ; 32(7): e12877, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32572994

RESUMO

Neurokinin B (NKB) is critical for fertility in humans and stimulates gonadotrophin-releasing hormone/luteinising hormone (LH) secretion in several species, including sheep. There is increasing evidence that the actions of NKB in the retrochiasmatic area (RCh) contribute to the induction of the preovulatory LH surge in sheep. In the present study, we determined whether there are sex differences in the response to RCh administration of senktide, an agonist to the NKB receptor (neurokinin receptor-3 [NK3R]), and in NKB and NK3R expression in the RCh of sheep. To normalise endogenous hormone concentrations, animals were gonadectomised and given implants to mimic the pattern of ovarian steroids seen in the oestrous cycle. In females, senktide microimplants in the RCh produced an increase in LH concentrations that lasted for at least 8 hours after the start of treatment, whereas a much shorter increment (approximately 2 hours) was seen in males. We next collected tissue from gonadectomised lambs 18 hours after the insertion of oestradiol implants that produce an LH surge in female, but not male, sheep for immunohistochemical analysis of NKB and NK3R expression. As expected, there were more NKB-containing neurones in the arcuate nucleus of females than males. Interestingly, there was a similar sexual dimorphism in NK3R-containing neurones in the RCh, NKB-containing close contacts onto these RCh NK3R neurones, and overall NKB-positive fibres in this region. These data demonstrate that there are both functional and morphological sex differences in NKB-NK3R signalling in the RCh and raise the possibility that this dimorphism contributes to the sex-dependent ability of oestradiol to induce an LH surge in female sheep.


Assuntos
Hipotálamo Médio/metabolismo , Neurocinina B/metabolismo , Caracteres Sexuais , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Kisspeptinas/metabolismo , Masculino , Neurônios/metabolismo , Receptores de Taquicininas/metabolismo , Ovinos , Transdução de Sinais/fisiologia
19.
Endocrinology ; 161(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32067028

RESUMO

Elevated and sustained estradiol concentrations cause a gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) surge that is necessary for ovulation. In sheep, several different neural systems have been implicated in this stimulatory action of estradiol and this study focused on somatostatin (SST) neurons in the ventral lateral region of the ventral medial nucleus (vlVMN) which express c-Fos during the surge. First, we determined if increased activity of SST neurons could be related to elevated GnRH secretion by assessing SST synapses onto GnRH neurons and neurons coexpressing kisspeptin, neurokinin B, dynorphin (KNDy). We found that the percentage of preoptic area GnRH neurons that receive SST input increased during the surge compared with other phases of the cycle. However, since SST is generally inhibitory, and pharmacological manipulation of SST signaling did not alter the LH surge in sheep, we hypothesized that nitric oxide (NO) was also produced by these neurons to account for their activation during the surge. In support of this hypothesis we found that (1) the majority of SST cells in the vlVMN (>80%) contained neuronal nitric oxide synthase (nNOS); (2) the expression of c-Fos in dual-labeled SST-nNOS cells, but not in single-labeled cells, increased during the surge compared with other phases of the cycle; and (3) intracerebroventricular (ICV) infusion of the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester, completely blocked the estrogen-induced LH surge. These data support the hypothesis that the population of SST-nNOS cells in the vlVMN are a source of NO that is critical for the LH surge, and we propose that they are an important site of estradiol positive feedback in sheep.


Assuntos
Hormônio Luteinizante/sangue , Óxido Nítrico/metabolismo , Ovulação , Ovinos/sangue , Núcleo Hipotalâmico Ventromedial/enzimologia , Animais , Feminino , Óxido Nítrico Sintase Tipo I/metabolismo , Somatostatina/metabolismo
20.
Endocrinology ; 160(12): 2990-3000, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31599937

RESUMO

Recent evidence has implicated neurokinin B (NKB) signaling in the retrochiasmatic area (RCh) of the ewe in the LH surge. To test this hypothesis, we first lesioned NK3R neurons in this area by using a saporin conjugate (NK3-SAP). Three weeks after bilateral injection of NK3-SAP or a blank control (BLK-SAP) into the RCh, an LH surge was induced by using an artificial follicular-phase model in ovariectomized ewes. NK3-SAP lesioned approximately 88% of RCh NK3R-containing neurons and reduced the amplitude of the estrogen-induced LH surge by 58%, an inhibition similar to that seen previously with intracerebroventricular (icv) infusion of a KISS1R antagonist (p271). We next tested the hypothesis that NKB signaling in the RCh acts via kisspeptin by determining whether the combined effects of NK3R-SAP lesions and icv infusion of p271 were additive. Experiment 1 was replicated except that ewes received two sequential artificial follicular phases with infusions of p271 or vehicle using a crossover design. The combination of the two treatments decreased the peak of the LH surge by 59%, which was similar to that seen with NK3-SAP (52%) or p271 (54%) alone. In contrast, p271 infusion delayed the onset and peak of the LH surge in both NK3-SAP- and BLK-SAP-injected ewes. Based on these data, we propose that NKB signaling in the RCh increases kisspeptin levels critical for the full amplitude of the LH surge in the ewe but that kisspeptin release occurs independently of RCh input at the onset of the surge to initiate GnRH secretion.


Assuntos
Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Neurocinina B/metabolismo , Animais , Feminino , Ovinos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa