Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 591: 31-36, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34995983

RESUMO

2-Arachidonoylglycerol (2-AG) is the most potent and abundant endocannabinoid that acts as a full agonist at the cannabinoid 1 (CB1) and 2 (CB2) receptors. It serves as a substrate for several serine hydrolases, including monoacylglycerol lipase (MGL), α/ß hydrolase domain 6 (ABHD6) and fatty acid amide hydrolase (FAAH). However, 2-AG's rapid conversion to 1-AG (the S stereoisomer) and 3-AG (the R stereoisomer) complicates in vivo signaling. Here, we present the interaction profiles of 2-AG and its isomerization products, 1- and 3-AG, with the endocannabinoid MGL, ABHD6 and FAAH enzymes as well as the CB1 receptor. The 1- and 3-AG enantiomers are less prone to isomerization, and their affinities to endocannabinoid enzymes and potencies at CB1 receptor are quite different compared to 2-AG. Although MGL is the principal hydrolytic enzyme of 2-AG, 3-AG (the R isomer) appears to be the best substrate for hMGL. Contrarily, 1-AG (the S isomer) demonstrates the worst substrate profile, indicating that the stereochemistry of 1(3)-monoacylglycerols is very important for MGL enzyme. On the other hand, both 1- and 3-AG (the sn1 monoacylglycerols) are efficiently hydrolyzed by hABHD6 without preference, while 2-AG (the sn2 monoacylglycerol) has the lowest rate of hydrolysis. FAAH, the principal hydrolytic enzyme for arachidonoylethanolamide (anandamide, AEA), catalyzes the hydrolysis of all three isomers with similar efficiencies. In a functional cAMP assay at CB1 receptor, all three isomers behaved as agonists, with 2-AG being the most potent, followed by 3-AG then 1-AG. The presented data provides stereochemical insights to design chemically stable AG analogs with preferential stability against enzymes of interest.


Assuntos
Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Amidoidrolases/metabolismo , Ácidos Araquidônicos/química , Soluções Tampão , Cromatografia Líquida de Alta Pressão , AMP Cíclico/metabolismo , Endocanabinoides/química , Glicerídeos/química , Células HEK293 , Humanos , Hidrólise , Isomerismo , Cinética , Ligantes , Monoacilglicerol Lipases/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa