Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biochem ; 117(6): 1396-406, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26552846

RESUMO

Osteoblast differentiation and migration are necessary for bone formation during bone remodeling. Mice lacking the proline-rich tyrosine kinase Pyk2 (Pyk2-KO) have increased bone mass, in part due to increased osteoblast proliferation. Megakaryocytes (MKs), the platelet-producing cells, also promote osteoblast proliferation in vitro and bone-formation in vivo via a pathway that involves Pyk2. In the current study, we examined the mechanism of action of Pyk2, and the role of MKs, on osteoblast differentiation and migration. We found that Pyk2-KO osteoblasts express elevated alkaline phosphatase (ALP), type I collagen and osteocalcin mRNA levels as well as increased ALP activity, and mineralization, confirming that Pyk2 negatively regulates osteoblast function. Since Pyk2 Y402 phosphorylation is important for its catalytic activity and for its protein-scaffolding functions, we expressed the phosphorylation-mutant (Pyk2(Y402F) ) and kinase-mutant (Pyk2(K457A) ) in Pyk2-KO osteoblasts. Both Pyk2(Y402F) and Pyk2(K457A) reduced ALP activity, whereas only kinase-inactive Pyk2(K457A) inhibited Pyk2-KO osteoblast migration. Consistent with a role for Pyk2 on ALP activity, co-culture of MKs with osteoblasts led to a decrease in the level of phosphorylated Pyk2 (pY402) as well as a decrease in ALP activity. Although, Pyk2-KO osteoblasts exhibited increased migration compared to wild-type osteoblasts, Pyk2 expression was not required necessary for the ability of MKs to stimulate osteoblast migration. Together, these data suggest that osteoblast differentiation and migration are inversely regulated by MKs via distinct Pyk2-dependent and independent signaling pathways. Novel drugs that distinguish between the kinase-dependent or protein-scaffolding functions of Pyk2 may provide therapeutic specificity for the control of bone-related diseases.


Assuntos
Quinase 2 de Adesão Focal/genética , Quinase 2 de Adesão Focal/metabolismo , Megacariócitos/citologia , Osteoblastos/citologia , Animais , Diferenciação Celular , Movimento Celular , Células Cultivadas , Técnicas de Cocultura , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Megacariócitos/metabolismo , Camundongos , Osteoblastos/metabolismo , Fosforilação , Transdução de Sinais
2.
JCI Insight ; 8(13)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37427592

RESUMO

B cells contribute to multiple aspects of autoimmune disorders, and B cell-targeting therapies, including B cell depletion, have been proven to be efficacious in treatment of multiple autoimmune diseases. However, the development of novel therapies targeting B cells with higher efficacy and a nondepleting mechanism of action is highly desirable. Here we describe a nondepleting, high-affinity anti-human CD19 antibody LY3541860 that exhibits potent B cell inhibitory activities. LY3541860 inhibits B cell activation, proliferation, and differentiation of primary human B cells with high potency. LY3541860 also inhibits human B cell activities in vivo in humanized mice. Similarly, our potent anti-mCD19 antibody also demonstrates improved efficacy over CD20 B cell depletion therapy in multiple B cell-dependent autoimmune disease models. Our data indicate that anti-CD19 antibody is a highly potent B cell inhibitor that may have potential to demonstrate improved efficacy over currently available B cell-targeting therapies in treatment of autoimmune conditions without causing B cell depletion.


Assuntos
Doenças Autoimunes , Linfócitos B , Camundongos , Animais , Antígenos CD19 , Doenças Autoimunes/tratamento farmacológico
3.
PLoS One ; 15(7): e0236891, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32730332

RESUMO

Signal Transducer and Activator of Transcription 3 (STAT3) has recently been shown to be involved in bone development and has been implicated in bone diseases, such as Job's Syndrome. Bone growth and changes have been known for many years to differ between sexes with male bones tending to have higher bone mass than female bones and older females tending to lose bone mass at faster rates than older males. Previous studies using conditional knock mice with Stat3 specifically deleted from the osteoblasts showed both sexes exhibited decreased bone mineral density (BMD) and strength. Using the Cre-Lox system with Cathepsin K promotor driving Cre to target the deletion of the Stat3 gene in mature osteoclasts (STAT3-cKO mice), we observed that 8-week old STAT3-cKO female femurs exhibited significantly lower BMD and bone mineral content (BMC) compared to littermate control (CN) females. There were no differences in BMD and BMC observed between male knock-out and male CN femurs. However, micro-computed tomography (µCT) analysis showed that both male and female STAT3-cKO mice had significant decreases in bone volume/tissue volume (BV/TV). Bone histomorphometry analysis of the distal femur, further revealed a decrease in bone formation rate and mineralizing surface/bone surface (MS/BS) with a significant decrease in osteoclast surface in female, but not male, STAT3-cKO mice. Profiling gene expression in an osteoclastic cell line with a knockdown of STAT3 showed an upregulation of a number of genes that are directly regulated by estrogen receptors. These data collectively suggest that regulation of STAT3 differs in male and female osteoclasts and that inactivation of STAT3 in osteoclasts affects bone turnover more in females than males, demonstrating the complicated nature of STAT3 signaling pathways in osteoclastogenesis. Drugs targeting the STAT3 pathway may be used for treatment of diseases such as Job's Syndrome and osteoporosis.


Assuntos
Reabsorção Óssea/patologia , Osso e Ossos/patologia , Osteoclastos/patologia , Osteogênese , Osteoporose/patologia , Fator de Transcrição STAT3/fisiologia , Animais , Densidade Óssea , Remodelação Óssea , Reabsorção Óssea/etiologia , Osso e Ossos/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/metabolismo , Osteoporose/etiologia
4.
Bone Rep ; 11: 100218, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31440530

RESUMO

Signal transducer and activator of transcription 3 (Stat3) is a member of the Stat family of proteins involved in signaling in many different cell types, including osteocytes. Osteocytes are considered major mechanosensing cells in bone due to their intricate dendritic networks able to sense changes in physical force and to orchestrate the response of osteoclasts and osteoblasts. We examined the role of Stat3 in osteocytes by generating mice lacking Stat3 in these cells using the Dmp-1(8kb)-Cre promoter (Stat3cKO mice). Compared to age-matched littermate controls, Stat3cKO mice of either sex (18 weeks old) exhibit reduced bone formation indices, decreased osteoblasts and increased osteoclasts, and altered material properties, without detectable changes in bone mineral density (BMD) or content of either trabecular or cortical bone. In addition, Stat3cKO mice of either sex show significantly decreased load-induced bone formation. Furthermore, pharmacologic inhibition of Stat3 in osteocytes in vitro with WP1066 blocked the increase in cytosolic calcium induced by ATP, a mediator of the cellular responses to sheer stress. WP1066 also increased reactive oxygen species (ROS) production in cultured MLO-Y4 osteocytes. These data demonstrate that Stat3 is a critical mediator of mechanical signals received by osteocytes and suggest that osteocytic Stat3 is a potential therapeutic target to stimulate bone anabolism.

5.
Bone ; 127: 452-459, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31299382

RESUMO

Osteoblast number and activity decreases with aging, contributing to the age-associated decline of bone mass, but the mechanisms underlying changes in osteoblast activity are not well understood. Here, we show that the age-associated bone loss critically depends on impairment of the ability of megakaryocytes (MKs) to support osteoblast proliferation. Co-culture of osteoblast precursors with young MKs is known to increase osteoblast proliferation and bone formation. However, co-culture of osteoblast precursors with aged MKs resulted in significantly fewer osteoblasts compared to co-culture with young MKs, and this was associated with the downregulation of transforming growth factor beta. In addition, the ability of MKs to increase bone mass was attenuated during aging as transplantation of GATA1low/low hematopoietic donor cells (which have elevated MKs/MK precursors) from young mice resulted in an increase in bone mass of recipient mice compared to transplantation of young wild-type donor cells, whereas transplantation of GATA1low/low donor cells from old mice failed to enhance bone mass in recipient mice compared to transplantation of old wild-type donor cells. These findings suggest that the preservation or restoration of the MK-mediated induction of osteoblast proliferation during aging may hold the potential to prevent age-associated bone loss and resulting fractures.


Assuntos
Envelhecimento/fisiologia , Osso e Ossos/anatomia & histologia , Megacariócitos/citologia , Osteoblastos/citologia , Transferência Adotiva , Animais , Medula Óssea/metabolismo , Osso e Ossos/diagnóstico por imagem , Contagem de Células , Proliferação de Células , Fator de Transcrição GATA1/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Fenótipo , Microtomografia por Raio-X
6.
Mol Cell Endocrinol ; 474: 35-47, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29428397

RESUMO

Bone remodeling is controlled by the actions of bone-degrading osteoclasts and bone-forming osteoblasts (OBs). Aging and loss of estrogen after menopause affects bone mass and quality. Estrogen therapy, including selective estrogen receptor modulators (SERMs), can prevent bone loss and increase bone mineral density in post-menopausal women. Although investigations of the effects of estrogen on osteoclast activity are well advanced, the mechanism of action of estrogen on OBs is still unclear. The proline-rich tyrosine kinase 2 (Pyk2) is important for bone formation and female mice lacking Pyk2 (Pyk2-KO) exhibit elevated bone mass, increased bone formation rate and reduced osteoclast activity. Therefore, in the current study, we examined the role of estrogen signaling on the mechanism of action of Pyk2 in OBs. As expected, Pyk2-KO OBs showed significantly higher proliferation, matrix formation, and mineralization than WT OBs. In addition we found that Pyk2-KO OBs cultured in the presence of either 17ß-estradiol (E2) or raloxifene, a SERM used for the treatment of post-menopausal osteoporosis, showed a further robust increase in alkaline phosphatase (ALP) activity and mineralization. We examined the possible mechanism of action and found that Pyk2 deletion promotes the proteasome-mediated degradation of estrogen receptor α (ERα), but not estrogen receptor ß (ERß). As a consequence, E2 signaling via ERß was enhanced in Pyk2-KO OBs. In addition, we found that Pyk2 deletion and E2 stimulation had an additive effect on ERK phosphorylation, which is known to stimulate cell differentiation and survival. Our findings suggest that in the absence of Pyk2, estrogen exerts an osteogenic effect on OBs through altered ERα and ERß signaling. Thus, targeting Pyk2, in combination with estrogen or raloxifene, may be a novel strategy for the prevention and/or treatment of bone loss diseases.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Estrogênios/farmacologia , Quinase 2 de Adesão Focal/deficiência , Osteoblastos/citologia , Cloridrato de Raloxifeno/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Biomarcadores/metabolismo , Contagem de Células , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/metabolismo , Quinase 2 de Adesão Focal/metabolismo , Deleção de Genes , Leupeptinas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Osteoblastos/metabolismo , Proteólise/efeitos dos fármacos
7.
Blood Adv ; 1(26): 2520-2528, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29296903

RESUMO

Networking between hematopoietic stem cells (HSCs) and cells of the hematopoietic niche is critical for stem cell function and maintenance of the stem cell pool. We characterized calvariae-resident osteomacs (OMs) and their interaction with megakaryocytes to sustain HSC function and identified distinguishing properties between OMs and bone marrow (BM)-derived macrophages. OMs, identified as CD45+F4/80+ cells, were easily detectable (3%-5%) in neonatal calvarial cells. Coculture of neonatal calvarial cells with megakaryocytes for 7 days increased OM three- to sixfold, demonstrating that megakaryocytes regulate OM proliferation. OMs were required for the hematopoiesis-enhancing activity of osteoblasts, and this activity was augmented by megakaryocytes. Serial transplantation demonstrated that HSC repopulating potential was best maintained by in vitro cultures containing osteoblasts, OMs, and megakaryocytes. With or without megakaryocytes, BM-derived macrophages were unable to functionally substitute for neonatal calvarial cell-associated OMs. In addition, OMs differentiated into multinucleated, tartrate resistant acid phosphatase-positive osteoclasts capable of bone resorption. Nine-color flow cytometric analysis revealed that although BM-derived macrophages and OMs share many cell surface phenotypic similarities (CD45, F4/80, CD68, CD11b, Mac2, and Gr-1), only a subgroup of OMs coexpressed M-CSFR and CD166, thus providing a unique profile for OMs. CD169 was expressed by both OMs and BM-derived macrophages and therefore was not a distinguishing marker between these 2 cell types. These results demonstrate that OMs support HSC function and illustrate that megakaryocytes significantly augment the synergistic activity of osteoblasts and OMs. Furthermore, this report establishes for the first time that the crosstalk between OMs, osteoblasts, and megakaryocytes is a novel network supporting HSC function.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa