Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570657

RESUMO

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been shown to enhance fingermark recovery compared to standard processes used by police forces, but there is no data to show how generally applicable the improvement is. Additionally, ToF-SIMS can be run in either positive or negative ion mode (or both), and there is no data on which mode of operation is most effective at revealing fingerprints. This study aims to fill these gaps by using ToF-SIMS to image fingerprints deposited on two common exhibit-type surfaces (polyethylene and stainless steel) using 10 donors and ageing fingerprints in either ambient, rainwater, or underground for 1 and 5 months. In all, 120 fingerprints were imaged using ToF-SIMS, and each was run in positive and negative modes. A fingerprint expert compared the fingerprint ridge detail produced by the standard process to the ToF-SIMS images. In over 50% of the samples, ToF-SIMS was shown to improve fingerprint ridge detail visualised by the respective standard process for all surfaces tested. In over 90% of the samples, the ridge detail produced by ToF-SIMS was equivalent to standard development across all different ageing and exposure conditions. The data shows that there is a benefit to running the ToF-SIMS in both positive and negative modes, even if no ridge detail was seen in one mode.

2.
Nanotechnology ; 33(22)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35158338

RESUMO

Secondary lithium-ion batteries are restricted in large-scale applications including power grids and long driving electric vehicles owing to the low specific capacity of conventional intercalation anodes possessing sluggish Li-ion diffusion kinetics. Herein, we demonstrate an unusual pseudocapacitive lithium-ion storage on defective Co3O4nanosheet anodes for high-performance rechargeable batteries. Cobalt-oxide nanosheets presented here composed of various defects including vacancies, dislocations and grain boundaries. Unique 2D holey microstructure enabled efficient charge transport as well as provided room for volume expansions associated with lithiation-delithiation process. These defective anodes exhibited outstanding pseudocapacitance (up to 87%), reversible capacities (1490 mAh g-1@ 25 mA g-1), rate capability (592 mAh g-1@ 30 A g-1), stable cycling (85% after 500 cycles @ 1 A g-1) and columbic efficiency (∼100%). Exceptional Li-ion storage phenomena in defective Co3O4nanosheets is accredited to the pseudocapacitive nature of conversion reaction resulting from ultrafast Li-ion diffusion through various crystal defects. The demonstrated approach of defect-induced pseudocapacitance can also be protracted for various low-cost and/or eco-friendly transition metal-oxides for next-generation rechargeable batteries.

3.
Nanotechnology ; 24(4): 045704, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23299911

RESUMO

A novel ambient pressure microwave assisted technique is developed in which silver and indium-modified ZnS is synthesized. The as-prepared ZnS is characterized by x-ray diffraction, UV-vis spectroscopy, x-ray photoelectron spectroscopy and luminescence spectroscopy. This procedure produced crystalline materials with particle sizes below 10 nm. The synthesis technique leads to defects in the crystal which induce mid-energy levels in the band gap and lead to indoor light photocatalytic activity. Increasing the amount of silver causes a phase transition from cubic blende to hexagonal phase ZnS. In a comparative study, when the ZnS cubic blende is heated in a conventional chamber furnace, it is completely converted to ZnO at 600 °C. Both cubic blende and hexagonal ZnS show excellent photocatalytic activity under irradiation from a 60 W light bulb. These ZnS samples also show significantly higher photocatalytic activity than the commercially available TiO(2) (Evonik-Degussa P-25).


Assuntos
Cristalização/métodos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Compostos de Selênio/química , Compostos de Selênio/efeitos da radiação , Compostos de Zinco/química , Compostos de Zinco/efeitos da radiação , Teste de Materiais , Nanopartículas Metálicas/efeitos da radiação , Micro-Ondas , Conformação Molecular/efeitos da radiação , Tamanho da Partícula , Propriedades de Superfície/efeitos da radiação
4.
Sci Rep ; 13(1): 19443, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945788

RESUMO

The ordered porous frameworks like MOFs and COFs are generally constructed using the monomers through distinctive metal-coordinated and covalent linkages. Meanwhile, the inter-structural transition between each class of these porous materials is an under-explored research area. However, such altered frameworks are expected to have exciting features compared to their pristine versions. Herein, we have demonstrated a chemical-induction phase-engineering strategy to transform a two-dimensional conjugated Cu-based SA-MOF (Cu-Tp) into 2D-COFs (Cu-TpCOFs). The structural phase transition offered in-situ pore size engineering from 1.1 nm to 1.5-2.0 nm. Moreover, the Cu-TpCOFs showed uniform and low percentage-doped (~ 1-1.5%) metal distribution and improved crystallinity, porosity, and stability compared to the parent Cu-Tp MOF. The construction of a framework from another framework with new linkages opens interesting opportunities for phase-engineering.

5.
Inorg Chem ; 51(13): 7164-73, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22690945

RESUMO

Highly visible-light-active S,N-codoped anatase-rutile heterojunctions are reported for the first time. The formation of heterojunctions at a relatively low temperature and visible-light activity are achieved through thiourea modification of the peroxo-titania complex. FT-IR spectroscopic studies indicated the formation of a Ti(4+)-thiourea complex upon reaction between peroxo-titania complex and thiourea. Decomposition of the Ti(4+)-thiourea complex and formation of visible-light-active S,N-codoped TiO(2) heterojunctions are confirmed using X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and UV/vis spectroscopic studies. Existence of sulfur as sulfate ions (S(6+)) and nitrogen as lattice (N-Ti-N) and interstitial (Ti-N-O) species in heterojunctions are identified using X-ray photoelectron spectroscopy (XPS) and FT-IR spectroscopic techniques. UV-vis and valence band XPS studies of these S,N-codoped heterojunctions proved the fact that the formation of isolated S 3p, N 2p, and Π* N-O states between the valence and conduction bands are responsible for the visible-light absorption. Titanium dioxide obtained from the peroxo-titania complex exists as pure anatase up to a calcination temperature as high as 900 °C. Whereas, thiourea-modified samples are converted to S,N-codoped anatase-rutile heterojunctions at a temperature as low as 500 °C. The most active S,N-codoped heterojunction 0.2 TU-TiO(2) calcined at 600 °C exhibits a 2-fold and 8-fold increase in visible-light photocatalytic activities in contrast to the control sample and the commercial photocatalyst Degussa P-25, respectively. It is proposed that the efficient electron-hole separation due to anatase to rutile electron transfer is responsible for the superior visible-light-induced photocatalytic activities of S,N-codoped heterojunctions.


Assuntos
Luz , Nanoestruturas/química , Nitrogênio/química , Oxigênio/química , Enxofre/química , Titânio/química , Catálise , Tamanho da Partícula , Processos Fototróficos , Propriedades de Superfície
6.
Nanomaterials (Basel) ; 12(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36145035

RESUMO

In this study, we examine the effect of integrating different carbon nanostructures (carbon nanotubes, CNTs, graphene nanoplatelets, GNPs) into Ni- and Ni-W-based bi-functional catalysts for hydrocracking of heptane performed at 400 °C. The effect of varying the SiO2/Al2O3 ratio of the zeolite Y support (between 5 and 30) on the heptane conversion is also studied. The results show that the activity, in terms of heptane conversion, followed the order CNT/Ni-ZY5 (92%) > GNP/Ni-ZY5 (89%) > CNT/Ni-W-ZY30 (86%) > GNP/Ni-W-ZY30 (85%) > CNT/Ni-ZY30 (84%) > GNP/Ni-ZY30 (83%). Thus, the CNT-based catalysts exhibited slightly higher heptane conversion as compared to the GNP-based ones. Furthermore, bimetallic (Ni-W) catalysts possessed higher BET surface areas (725 m2/g for CNT/Ni-W-ZY30 and 612 m2/g for CNT/Ni-ZY30) and exhibited enhanced hydrocracking activity as compared to the monometallic (Ni) catalyst with the same zeolite support and type of carbon structure. It was also shown that CNT-based catalysts possessed higher regeneration capability than their GNP-based counterparts due to the slightly higher thermal stability of the CVD-grown CNTs.

7.
Nanomaterials (Basel) ; 11(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34578756

RESUMO

Highly active metal-free mesoporous phosphated silica was synthesized by a two-step process and used as a SO2 hydrogenation catalyst. With the assistance of a microwave, MCM-41 was obtained within a 10 min heating process at 180 °C, then a low ratio of P precursor was incorporated into the mesoporous silica matrix by a phosphorization step, which was accomplished in oleylamine with trioctylphosphine at 350 °C for 2 h. For benchmarking, the SiO2 sample without P precursor insertion and the sample with P precursor insertion into the calcined SiO2 were also prepared. From the microstructural analysis, it was found that the presence of CTAB surfactant was important for the incorporation of active P species, thus forming a highly dispersed, ultrafine (uf) phosphate silica, (Si-P) catalyst. The above approach led to the promising catalytic performance of uf-P@meso-SiO2 in the selective hydrogenation of SO2 to H2S; the latter reaction is very important in sulfur-containing gas purification. In particular, uf-P@meso-SiO2 exhibited activity at the temperature range between 150 and 280 °C, especially SO2 conversion of 94% and H2S selectivity of 52% at 220 °C. The importance of the CTAB surfactant can be found in stabilizing the high dispersion of ultrafine P-related species (phosphates). Intrinsic characteristics of the materials were studied using XRD, FTIR, EDX, N2 adsorption/desorption, TEM, and XPS to reveal the structure of the above catalysts.

8.
ACS Appl Mater Interfaces ; 13(24): 27999-28009, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34105351

RESUMO

Sodium-ion hybrid capacitors (SHCs) have attracted great attention owing to the improved power density and cycling stability in comparison with sodium-ion batteries. Nevertheless, the energy density (<100 Wh·kg-1) is usually limited by low specific capacity anodes (<150 mAh·g-1) and "kinetics mismatch" between the electrodes. Hence, we report a high energy density (153 Wh·kg-1) SHC based on a highly pseudocapacitive interface-engineered 3D-CoO-NrGO anode. This high-performance anode (445 mAh·g-1 @0.025 A·g-1, 135 mAh·g-1 @5.0 A·g-1) consists of CoO (∼6 nm) nanoparticles chemically bonded to the NrGO network through Co-O-C bonds. Exceptional pseudocapacitive charge storage (up to ∼81%) and capacity retention (∼80% after 5000 cycles) are also identified for this SHC. Excellent performance of the 3D-CoO-NrGO anode and SHC is owing to the synergistic effect of the CoO conversion reaction and pseudocapacitive sodium-ion storage induced by numerous Na2O/Co/NrGO nanointerfaces. Co-O-C bonds and the 3D microstructure facilitating efficient strain relaxation and charge-transfer correspondingly are also identified as vital factors accountable for the excellent electrochemical performance. The interface-engineering strategy demonstrated provides opportunities to design high-performance transition metal oxide-based anodes for advanced SHCs.

9.
RSC Adv ; 11(15): 8569-8584, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35423403

RESUMO

The present study provides, for the first time in the literature, a comparative assessment of the catalytic performance of Ni catalysts supported on γ-Al2O3 and γ-Al2O3 modified with La2O3, in a continuous flow trickle bed reactor, for the selective deoxygenation of palm oil. The catalysts were prepared via the wet impregnation method and were characterized, after calcination and/or reduction, by N2 adsorption/desorption, XRD, NH3-TPD, CO2-TPD, H2-TPR, H2-TPD, XPS and TEM, and after the time-on-stream tests, by TGA, TPO, Raman and TEM. Catalytic experiments were performed between 300-400 °C, at a constant pressure (30 bar) and different LHSV (1.2-3.6 h-1). The results show that the incorporation of La2O3 in the Al2O3 support increased the Ni surface atomic concentration (XPS), affected the nature and abundance of surface basicity (CO2-TPD), and despite leading to a drop in surface acidity (NH3-TPD), the Ni/LaAl catalyst presented a larger population of medium-strength acid sites. These characteristics helped promote the SDO process and prevented extended cracking and the formation of coke. Thus, higher triglyceride conversions and n-C15 to n-C18 hydrocarbon yields were achieved with the Ni/LaAl at lower reaction temperatures. Moreover, the Ni/LaAl catalyst was considerably more stable during 20 h of time-on-stream. Examination of the spent catalysts revealed that both carbon deposition and degree of graphitization of the surface coke, as well as, the extent of sintering were lower on the Ni/LaAl catalyst, explaining its excellent performance during time-on-stream.

10.
ACS Appl Mater Interfaces ; 13(19): 22391-22415, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33834768

RESUMO

CO elimination through oxidation over highly active and cost-effective catalysts is a way forward for many processes of industrial and environmental importance. In this study, doped CeO2 with transition metals (TM = Cu, Co, Mn, Fe, Ni, Zr, and Zn) at a level of 20 at. % was tested for CO oxidation. The oxides were prepared using microwave-assisted sol-gel synthesis to improve catalyst's performance for the reaction of interest. The effect of heteroatoms on the physicochemical properties (structure, morphology, porosity, and reducibility) of the binary oxides M-Ce-O was meticulously investigated and correlated to their CO oxidation activity. It was found that the catalytic activity (per gram basis or TOF, s-1) follows the order Cu-Ce-O > Ce-Co-O > Ni-Ce-O > Mn-Ce-O > Fe-Ce-O > Ce-Zn-O > CeO2. Participation of mobile lattice oxygen species in the CO/O2 reaction does occur, the extent of which is heteroatom-dependent. For that, state-of-the-art transient isotopic 18O-labeled experiments involving 16O/18O exchange followed by step-gas CO/Ar or CO/O2/Ar switches were used to quantify the contribution of lattice oxygen to the reaction. SSITKA-DRIFTS studies probed the formation of carbonates while validating the Mars-van Krevelen (MvK) mechanism. Scanning transmission electron microscopy-high-angle annular dark field imaging coupled with energy-dispersive spectroscopy proved that the elemental composition of dopants in the individual nanoparticle of ceria is less than their composition at a larger scale, allowing the assessment of the doping efficacy. Despite the similar structural features of the catalysts, a clear difference in the Olattice mobility was also found as well as its participation (as expressed with the α descriptor) in the reaction, following the order αCu > αCo> αMn > αZn. Kinetic studies showed that it is rather the pre-exponential (entropic) factor and not the lowering of activation energy that justifies the order of activity of the solids. DFT calculations showed that the adsorption of CO on the Cu-doped CeO2 surface is more favorable (-16.63 eV), followed by Co, Mn, Zn (-14.46, -4.90, and -4.24 eV, respectively), and pure CeO2 (-0.63 eV). Also, copper compensates almost three times more charge (0.37e-) compared to Co and Mn, ca. 0.13e- and 0.10e-, respectively, corroborating for its tendency to be reduced. Surface analysis (X-ray photoelectron spectroscopy), apart from the oxidation state of the elements, revealed a heteroatom-ceria surface interaction (Oa species) of different extents and of different populations of Oa species.

11.
ACS Omega ; 5(1): 406-421, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31956788

RESUMO

Hybrid nanoarchitectures of AgInS2 and TiO2 photocatalysts were prepared by using a modified sol-gel method. The experimental results reveal that these nanocomposites display enhanced visible light absorption and effective charge carrier separation compared to their pristine parent samples (AgInS2 or TiO2). 0.5 wt % AgInS2 loading was found to be the optimum concentration for photocatalytic applications. More than 95% of doxycycline degradation was achieved within 180 min of solar light illumination. Similarly, the dopant concentrations at lower values (<2 wt %) exhibited 300 times higher H2 generation rate under visible light irradiation compared to AgInS2 and TiO2. The microbial strains (Escherichia coli and Staphylococcus aureus) exhibited a 99.999% reduction within half an hour of simulated solar light illumination. The computational investigation was employed to understand the structural, electronic, and the dielectric properties of AgInS2 and TiO2 composites. The improved photocatalytic results are explained as a result of the decreased rate of exciton recombination. The current investigation opens up new insights into the use of novel ternary heterostructure nanocomposites for improved visible light activity.

12.
Biomaterials ; 29(8): 963-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18061256

RESUMO

Sol-gel coatings which elute bioactive silver ions are presented as a potential solution to the problem of biofilm formation on indwelling surfaces. There is evidence that high-temperature processing of such materials can lead to diffusion of silver away from the coating surface, reducing the amount of available silver. In this study, we report the biofilm inhibition of a Staphylococcus epidermidis biofilm using a low-temperature processed silver-doped phenyltriethoxysilane sol-gel coating. The incorporation of a silver salt into a sol-gel matrix resulted in an initial high release of silver in de-ionised water and physiological buffered saline (PBS), followed by a lower sustained release for at least 6 days-as determined by graphite furnace-atomic absorption spectroscopy (GF-AAS). The release of silver ions from the sol-gel coating reduced the adhesion and prevented formation of a S. epidermidis biofilm over a 10-day period. The presence of surface silver before and after 24 h immersion in PBS was confirmed by X-ray photoelectron spectroscopy (XPS). These silver-doped coatings also exhibited significant antibacterial activity against planktonic S. epidermidis. A simple test to visualise the antibacterial effect of silver release coatings on neighbouring bacterial cultures is also reported.


Assuntos
Biofilmes/efeitos dos fármacos , Compostos de Organossilício/química , Prata/farmacologia , Staphylococcus epidermidis/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Materiais Revestidos Biocompatíveis/química , Microanálise por Sonda Eletrônica , Géis/química , Microscopia Eletrônica de Varredura , Prata/química , Staphylococcus epidermidis/crescimento & desenvolvimento
13.
J Hazard Mater ; 324(Pt A): 39-47, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26782784

RESUMO

Nanocrystalline ZnO photocatalysts were prepared by a sol-gel method and modified with fluorine to improve their photocatalytic anti-bacterial activity in visible light. Pathogenic bacteria such as Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) were employed to evaluate the antimicrobial properties of synthesized materials. The interaction with biological systems was assessed by analysis of the antibacterial properties of bacteria suspended in 2% (w/w) powder solutions. The F-doping was found to be effective against S. aureus (99.99% antibacterial activity) and E. coli (99.87% antibacterial activity) when irradiated with visible light. Production of reactive oxygen species is one of the major factors that negatively impact bacterial growth. In addition, the nanosize of the ZnO particles can also be toxic to microorganisms. The small size and high surface-to-volume ratio of the ZnO nanoparticles are believed to play a role in enhancing antimicrobial activity.


Assuntos
Antibacterianos/farmacologia , Fluoretos/química , Fluoretos/farmacologia , Óxido de Zinco/farmacologia , Antibacterianos/química , Catálise , Escherichia coli/efeitos dos fármacos , Halogenação , Luz , Testes de Sensibilidade Microbiana , Nanopartículas , Tamanho da Partícula , Processos Fotoquímicos , Espécies Reativas de Oxigênio , Staphylococcus aureus/efeitos dos fármacos , Difração de Raios X , Óxido de Zinco/química
14.
Materials (Basel) ; 9(4)2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28773413

RESUMO

Graphitic carbon nitride (g-C3N4) and titanium dioxide (TiO2) were chosen as a model system to investigate photocatalytic abilities of heterojunction system under UV and visible light conditions. The use of g-C3N4 has been shown to be effective in the reduction in recombination through the interaction between the two interfaces of TiO2 and g-C3N4. A simple method of preparing g-C3N4 through the pyrolysis of melamine was employed, which was then added to undoped TiO2 material to form the g-C3N4-TiO2 system. These materials were then fully characterized by X-ray diffraction (XRD), Brunauer Emmett Teller (BET), and various spectroscopic techniques including Raman, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), diffuse absorbance, and photoluminescence analysis. Photocatalysis studies were conducted using the model dye, rhodamine 6G utilizing visible and UV light irradiation. Raman spectroscopy confirmed that a composite of the materials was formed as opposed to a mixture of the two. Using XPS analysis, a shift in the nitrogen peak to that indicative of substitutional nitrogen was detected for all doped samples. This is then mirrored in the diffuse absorbance results, which show a clear decrease in band gap values for these samples, showing the effective band gap alteration achieved through this preparation process. When g-C3N4-TiO2 samples were analyzed under visible light irradiation, no significant improvement was observed compared that of pure TiO2. However, under UV light irradiation conditions, the photocatalytic ability of the doped samples exhibited an increased reactivity when compared to the undoped TiO2 (0.130 min-1), with 4% g-C3N4-TiO2 (0.187 min-1), showing a 43.9% increase in reactivity. Further doping to 8% g-C3N4-TiO2 lead to a decrease in reactivity against rhodamine 6G. BET analysis determined that the surface area of the 4% and 8% g-C3N4-TiO2 samples were very similar, with values of 29.4 and 28.5 m²/g, respectively, suggesting that the actual surface area is not a contributing factor. This could be due to an overloading of the system with covering of the active sites resulting in a lower reaction rate. XPS analysis showed that surface hydroxyl radicals and oxygen vacancies are not being formed throughout this preparation. Therefore, it can be suggested that the increased photocatalytic reaction rates are due to successful interfacial interactions with the g-C3N4-doped TiO2 systems.

15.
Sci Rep ; 6: 24770, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27098010

RESUMO

Bacterial infections are a major threat to the health of patients in healthcare facilities including hospitals. One of the major causes of patient morbidity is infection with Staphylococcus aureus. One of the the most dominant nosocomial bacteria, Methicillin Resistant Staphylococcus aureus (MRSA) have been reported to survive on hospital surfaces (e.g. privacy window glasses) for up to 5 months. None of the current anti-bacterial technology is efficient in eliminating Staphylococcus aureus. A novel transparent, immobilised and superhydrophilic coating of titanium dioxide, co-doped with fluorine and copper has been prepared on float glass substrates. Antibacterial activity has demonstrated (by using Staphylococcus aureus), resulting from a combination of visible light activated (VLA) photocatalysis and copper ion toxicity. Co-doping with copper and fluorine has been shown to improve the performance of the coating, relative to a purely fluorine-doped VLA photocatalyst. Reductions in bacterial population of log10 = 4.2 under visible light irradiation and log10 = 1.8 in darkness have been achieved, compared with log10 = 1.8 under visible light irradiation and no activity, for a purely fluorine-doped titania. Generation of reactive oxygen species from the photocatalytic coatings is the major factor that significantly reduces the bacterial growth on the glass surfaces.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Cobre , Infecção Hospitalar/microbiologia , Fluoretos , Luz , Titânio , Bactérias/efeitos dos fármacos , Catálise , Cobre/química , Fluoretos/química , Humanos , Testes de Sensibilidade Microbiana , Espectroscopia Fotoeletrônica , Propriedades de Superfície , Titânio/química , Difração de Raios X
16.
ACS Appl Mater Interfaces ; 5(5): 1663-72, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23379473

RESUMO

Visible-light-induced antibacterial activity of carbon-doped anatase-brookite titania nano-heterojunction photocatalysts are reported for the first time. These heterostructures were prepared using a novel low temperature (100 °C) nonhydrothermal low power microwave (300 W) assisted method. Formation of interband C 2p states was found to be responsible for the band gap narrowing of the carbon doped heterojunctions. The most active photocatalyst obtained after 60 min of microwave irradiation exhibits a 2-fold higher visible-light induced photocatalytic activity in contrast to the standard commercial photocatalyst Evonik-Degussa P-25. Staphylococcus aureus inactivation rate constant for carbon-doped nano-heterojunctions and the standard photocatalyst was 0.0023 and -0.0081 min(-1), respectively. It is proposed that the photoexcited electrons (from the C 2p level) are effectively transferred from the conduction band of brookite to that of anatase causing efficient electron-hole separation, which is found to be responsible for the superior visible-light induced photocatalytic and antibacterial activities of carbon-doped anatase-brookite nano-heterojunctions.


Assuntos
Antibacterianos/química , Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/química , Titânio/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Catálise/efeitos da radiação , Luz , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Titânio/farmacologia
17.
J Hazard Mater ; 211-212: 88-94, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21963170

RESUMO

In order to study the visible light photocatalytic activity of nitrogen doped titanium dioxide, the interaction between nitrogen dopant sources and titania precursors during sol-gel synthesis is investigated. N-TiO(2) was synthesised using the sol-gel method using 1,3-diaminopropane as a nitrogen source. Samples were annealed several temperatures and the percentage of rutile present determined by X-ray diffraction to be 0% (500°C), 46% (600°C), and 94% (700°C). The reducing amounts of anatase at higher temperatures are studied using FTIR, which suggests the absence of any polymeric chains formed by the chelating agents, which would normally extend anatase-to-rutile transformation temperatures. Differential scanning calorimetry shows that crystalliation occurs before 500°C, providing the crystalline form determined by XRD at 500°C. Increased temperature also resulted in diminished visible light absorption capability, with only the 500°C sample showing significant absorption in the visible region. XPS studies revealed that nitrogen remained within the TiO(2) lattice at higher temperatures. Consequent with the reduced visible light absorption capacity, photocatalytic activity also reduced with increased annealing temperature. Degradation kinetics of methylene blue, irradiated with a 60 W house-bulb, resulted in first order degradation rates constants of 0.40 × 10(-2), 0.19 × 10(-2), and 0.22 × 10(-2)min(-1) for 500, 600, and 700°C respectively. Degradation of Degussa P25 was minimal under the same conditions, and that of undoped TiO(2) was 0.02 × 10(-2)min(-1). Similarly, using 4-chlorophenol under solar irradiation conditions, the N-doped sample at 500°C substantially out-performed the undoped sample. These results are discussed in the context of the effect of increasing temperature on the nature of the band gap.


Assuntos
Clorofenóis/química , Azul de Metileno/química , Nitrogênio/química , Titânio/química , Poluentes Químicos da Água/química , Varredura Diferencial de Calorimetria , Catálise , Clorofenóis/efeitos da radiação , Diaminas/química , Luz , Azul de Metileno/efeitos da radiação , Espectroscopia Fotoeletrônica , Fotólise , Poluentes Químicos da Água/efeitos da radiação , Purificação da Água/métodos , Difração de Raios X
18.
Int J Pharm ; 387(1-2): 79-86, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20006691

RESUMO

The sensitivity of two techniques in tracking changes in surface energetics was investigated for a crystalline excipient, D-mannitol. Macroscopic crystals of D-mannitol were grown from saturated water solution by slow cooling, and sessile drop contact angle was employed to measure the anisotropic surface energy. The facet-specific surface energy was consistent with localised hydroxyl group concentrations determined by X-ray photoelectron spectroscopy (XPS), and was also in excellent agreement with the surface energy distribution of the powder form of mannitol measured via a new methodology using inverse gas chromatography (IGC) at finite concentrations. The gamma(SV)(d) was found to vary between 39.5 mJ/m(2) and 44.1 mJ/m(2) for contact angle and between 40 mJ/m(2) and 49 mJ/m(2) for IGC measurements. We report here, a high level of surface heterogeneity on the native mannitol crystal surfaces. When the surfaces of both D-mannitol samples (powder and large single crystals) were modified by dichlorodimethylsilane to induce surface hydrophobicity, both IGC and contact angle revealed a homogeneous surface due to functionalisation of mannitol crystal surface with methyl groups resulting in gamma(SV)(d) of approximately 34 mJ/m(2). It was shown that both IGC and contact angle techniques are able to detect surface chemical variations and detailed surface energetic distribution.


Assuntos
Cromatografia Gasosa/métodos , Excipientes/química , Manitol/química , Química Farmacêutica/métodos , Cristalização , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia Fotoeletrônica/métodos , Pós , Silanos/química , Tecnologia Farmacêutica/métodos
19.
J Colloid Interface Sci ; 345(2): 286-92, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20211472

RESUMO

Coatings that demonstrate reduced attachment of crystalline precipitates and the medical device colonising Staphylococcus epidermidis were prepared by the immobilisation of silver doped perfluoropolyether-urethane siloxane thin films on glass substrates. The presence of stratified hydrophobic perfluoropolyether groups protects the coating surface from the attachment of crystalline hydrophilic species such as chlorides and phosphates, whilst silver ion release inhibited attachment of S. epidermidis and subsequent biofilm formation in vitro. The release of silver ions protects the perfluoro groups from the hydrophobic interactions of S. epidermidis cells, which can reduce the hydrophobicity of the protective coating. These coatings also exhibited significant antibacterial activity against planktonic Acinetobacter baumannii and S. epidermidis bacterial strains. Detailed elemental and chemical surface analysis obtained using X-ray photoelectron spectroscopy (XPS) provided useful information on the effect of bacterial incubation on key indicator hydrophobic and hydrophilic functional groups. XPS analysis indicated preferential adsorption of S. epidermidis cells at the hydrophobic sites along the polymeric chain. These dual-action hygienic coatings can be employed to protect against contamination environmental surfaces and bacterial colonisation on implanted medical devices.


Assuntos
Acinetobacter baumannii/crescimento & desenvolvimento , Antibacterianos/química , Contaminação de Equipamentos/prevenção & controle , Prata/química , Staphylococcus epidermidis/crescimento & desenvolvimento , Éteres/química , Fluorocarbonos/química , Interações Hidrofóbicas e Hidrofílicas , Siloxanas/química , Uretana/química
20.
Colloids Surf B Biointerfaces ; 72(1): 62-7, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19427177

RESUMO

The colonisation of clinical and industrial surfaces with pathogenic microorganisms has prompted increased research into the development of effective antibacterial and antifouling coatings. There is evidence that implanted biomedical surfaces coated with metallic silver can be inactivated by physiological fluids, thus reducing the bioactivity of the coating. In this work, we report the biofilm inhibition of Staphylococcus epidermidis using a room temperature processed silver doped perfluoropolyether-urethane coating. The release of silver ions from these fluoropolymers over a six-day period inhibited bacterial encrustation - as observed by scanning electron microscopy (SEM). X-ray photoelectron spectroscopy (XPS) analysis indicated differences in carbon, fluorine and sodium surface composition between silver doped and undoped fluoropolymers after exposure to nutrient rich media. These silver doped perfluoropolyether coatings also exhibited antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumannii; suggesting potential use in preventing transmission of pathogenic and opportunistic microbes on environmental surfaces in healthcare facilities. The broad-spectrum antibacterial activity of these silver release coatings may be exploited on biomaterials surfaces to combat the development of resistant Gram-negative Enterobacteriaceae that can occur during prophylactic treatment for urinary tract infections.


Assuntos
Antibacterianos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Éteres/farmacologia , Fluorocarbonos/farmacologia , Prata/farmacologia , Uretana/farmacologia , Bactérias/citologia , Bactérias/efeitos dos fármacos , Bactérias/ultraestrutura , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Análise Espectral , Propriedades de Superfície/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa