Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Cell ; 179(5): 1068-1083.e21, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730850

RESUMO

Ocean microbial communities strongly influence the biogeochemistry, food webs, and climate of our planet. Despite recent advances in understanding their taxonomic and genomic compositions, little is known about how their transcriptomes vary globally. Here, we present a dataset of 187 metatranscriptomes and 370 metagenomes from 126 globally distributed sampling stations and establish a resource of 47 million genes to study community-level transcriptomes across depth layers from pole-to-pole. We examine gene expression changes and community turnover as the underlying mechanisms shaping community transcriptomes along these axes of environmental variation and show how their individual contributions differ for multiple biogeochemically relevant processes. Furthermore, we find the relative contribution of gene expression changes to be significantly lower in polar than in non-polar waters and hypothesize that in polar regions, alterations in community activity in response to ocean warming will be driven more strongly by changes in organismal composition than by gene regulatory mechanisms. VIDEO ABSTRACT.


Assuntos
Regulação da Expressão Gênica , Metagenoma , Oceanos e Mares , Transcriptoma/genética , Geografia , Microbiota/genética , Anotação de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Água do Mar/microbiologia , Temperatura
2.
Nucleic Acids Res ; 50(W1): W516-W526, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35687095

RESUMO

Testing hypothesis about the biogeography of genes using large data resources such as Tara Oceans marine metagenomes and metatranscriptomes requires significant hardware resources and programming skills. The new release of the 'Ocean Gene Atlas' (OGA2) is a freely available intuitive online service to mine large and complex marine environmental genomic databases. OGA2 datasets available have been extended and now include, from the Tara Oceans portfolio: (i) eukaryotic Metagenome-Assembled-Genomes (MAGs) and Single-cell Assembled Genomes (SAGs) (10.2E+6 coding genes), (ii) version 2 of Ocean Microbial Reference Gene Catalogue (46.8E+6 non-redundant genes), (iii) 924 MetaGenomic Transcriptomes (7E+6 unigenes), (iv) 530 MAGs from an Arctic MAG catalogue (1E+6 genes) and (v) 1888 Bacterial and Archaeal Genomes (4.5E+6 genes), and an additional dataset from the Malaspina 2010 global circumnavigation: (vi) 317 Malaspina Deep Metagenome Assembled Genomes (0.9E+6 genes). Novel analyses enabled by OGA2 include phylogenetic tree inference to visualize user queries within their context of sequence homologues from both the marine environmental dataset and the RefSeq database. An Application Programming Interface (API) now allows users to query OGA2 using command-line tools, hence providing local workflow integration. Finally, gene abundance can be interactively filtered directly on map displays using any of the available environmental variables. Ocean Gene Atlas v2.0 is freely-available at: https://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/.


Assuntos
Bactérias , Eucariotos , Biologia Marinha , Plâncton , Bactérias/genética , Eucariotos/genética , Metagenoma , Filogenia , Plâncton/genética
3.
Nature ; 532(7600): 465-470, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-26863193

RESUMO

The biological carbon pump is the process by which CO2 is transformed to organic carbon via photosynthesis, exported through sinking particles, and finally sequestered in the deep ocean. While the intensity of the pump correlates with plankton community composition, the underlying ecosystem structure driving the process remains largely uncharacterized. Here we use environmental and metagenomic data gathered during the Tara Oceans expedition to improve our understanding of carbon export in the oligotrophic ocean. We show that specific plankton communities, from the surface and deep chlorophyll maximum, correlate with carbon export at 150 m and highlight unexpected taxa such as Radiolaria and alveolate parasites, as well as Synechococcus and their phages, as lineages most strongly associated with carbon export in the subtropical, nutrient-depleted, oligotrophic ocean. Additionally, we show that the relative abundance of a few bacterial and viral genes can predict a significant fraction of the variability in carbon export in these regions.


Assuntos
Organismos Aquáticos/metabolismo , Carbono/metabolismo , Ecossistema , Plâncton/metabolismo , Água do Mar/química , Organismos Aquáticos/genética , Organismos Aquáticos/isolamento & purificação , Clorofila/metabolismo , Dinoflagellida/genética , Dinoflagellida/isolamento & purificação , Dinoflagellida/metabolismo , Expedições , Genes Bacterianos , Genes Virais , Geografia , Oceanos e Mares , Fotossíntese , Plâncton/genética , Plâncton/isolamento & purificação , Água do Mar/microbiologia , Água do Mar/parasitologia , Synechococcus/genética , Synechococcus/isolamento & purificação , Synechococcus/metabolismo , Synechococcus/virologia
4.
Nucleic Acids Res ; 46(W1): W289-W295, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29788376

RESUMO

The Ocean Gene Atlas is a web service to explore the biogeography of genes from marine planktonic organisms. It allows users to query protein or nucleotide sequences against global ocean reference gene catalogs. With just one click, the abundance and location of target sequences are visualized on world maps as well as their taxonomic distribution. Interactive results panels allow for adjusting cutoffs for alignment quality and displaying the abundances of genes in the context of environmental features (temperature, nutrients, etc.) measured at the time of sampling. The ease of use enables non-bioinformaticians to explore quantitative and contextualized information on genes of interest in the global ocean ecosystem. Currently the Ocean Gene Atlas is deployed with (i) the Ocean Microbial Reference Gene Catalog (OM-RGC) comprising 40 million non-redundant mostly prokaryotic gene sequences associated with both Tara Oceans and Global Ocean Sampling (GOS) gene abundances and (ii) the Marine Atlas of Tara Ocean Unigenes (MATOU) composed of >116 million eukaryote unigenes. Additional datasets will be added upon availability of further marine environmental datasets that provide the required complement of sequence assemblies, raw reads and contextual environmental parameters. Ocean Gene Atlas is a freely-available web service at: http://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/.


Assuntos
Ecossistema , Internet , Plâncton/genética , Software , Organismos Aquáticos/genética , Biodiversidade , Oceanos e Mares , Filogeografia
5.
Environ Microbiol ; 16(9): 2659-71, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24102695

RESUMO

Sequencing of 16S rDNA polymerase chain reaction (PCR) amplicons is the most common approach for investigating environmental prokaryotic diversity, despite the known biases introduced during PCR. Here we show that 16S rDNA fragments derived from Illumina-sequenced environmental metagenomes (mi tags) are a powerful alternative to 16S rDNA amplicons for investigating the taxonomic diversity and structure of prokaryotic communities. As part of the Tara Oceans global expedition, marine plankton was sampled in three locations, resulting in 29 subsamples for which metagenomes were produced by shotgun Illumina sequencing (ca. 700 Gb). For comparative analyses, a subset of samples was also selected for Roche-454 sequencing using both shotgun (m454 tags; 13 metagenomes, ca. 2.4 Gb) and 16S rDNA amplicon (454 tags; ca. 0.075 Gb) approaches. Our results indicate that by overcoming PCR biases related to amplification and primer mismatch, mi tags may provide more realistic estimates of community richness and evenness than amplicon 454 tags. In addition, mi tags can capture expected beta diversity patterns. Using mi tags is now economically feasible given the dramatic reduction in high-throughput sequencing costs, having the advantage of retrieving simultaneously both taxonomic (Bacteria, Archaea and Eukarya) and functional information from the same microbial community.


Assuntos
DNA Ribossômico/genética , Metagenoma , Metagenômica/métodos , Análise de Sequência de DNA/métodos , Archaea/genética , Bactérias/genética , Primers do DNA/genética , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética
6.
Appl Environ Microbiol ; 80(10): 3150-60, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24632251

RESUMO

Viruses strongly influence the ecology and evolution of their eukaryotic hosts in the marine environment, but little is known about their diversity and distribution. Prasinoviruses infect an abundant and widespread class of phytoplankton, the Mamiellophyceae, and thereby exert a specific and important role in microbial ecosystems. However, molecular tools to specifically identify this viral genus in environmental samples are still lacking. We developed two primer sets, designed for use with polymerase chain reactions and 454 pyrosequencing technologies, to target two conserved genes, encoding the DNA polymerase (PolB gene) and the major capsid protein (MCP gene). While only one copy of the PolB gene is present in Prasinovirus genomes, there are at least seven paralogs for MCP, the copy we named number 6 being shared with other eukaryotic alga-infecting viruses. Primer sets for PolB and MCP6 were thus designed and tested on 6 samples from the Tara Oceans project. The results suggest that the MCP6 amplicons show greater richness but that PolB gave a wider coverage of Prasinovirus diversity. As a consequence, we recommend use of the PolB primer set, which will certainly reveal exciting new insights about the diversity and distribution of prasinoviruses at the community scale.


Assuntos
Biodiversidade , Proteínas do Capsídeo/genética , DNA Polimerase Dirigida por DNA/genética , Phycodnaviridae/isolamento & purificação , Água do Mar/virologia , Proteínas Virais/genética , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular , Phycodnaviridae/classificação , Phycodnaviridae/enzimologia , Phycodnaviridae/genética , Filogenia , Reação em Cadeia da Polimerase
7.
PLoS Biol ; 9(10): e1001177, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22028628

RESUMO

The structure, robustness, and dynamics of ocean plankton ecosystems remain poorly understood due to sampling, analysis, and computational limitations. The Tara Oceans consortium organizes expeditions to help fill this gap at the global level.


Assuntos
Ecossistema , Expedições , Biologia Marinha , Plâncton/crescimento & desenvolvimento , Animais , Oceanos e Mares
8.
Genome Res ; 20(5): 664-74, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20360389

RESUMO

Mimivirus, a virus infecting Acanthamoeba, is the prototype of the Mimiviridae, the latest addition to the nucleocytoplasmic large DNA viruses. The Mimivirus genome encodes close to 1000 proteins, many of them never before encountered in a virus, such as four amino-acyl tRNA synthetases. To explore the physiology of this exceptional virus and identify the genes involved in the building of its characteristic intracytoplasmic "virion factory," we coupled electron microscopy observations with the massively parallel pyrosequencing of the polyadenylated RNA fractions of Acanthamoeba castellanii cells at various time post-infection. We generated 633,346 reads, of which 322,904 correspond to Mimivirus transcripts. This first application of deep mRNA sequencing (454 Life Sciences [Roche] FLX) to a large DNA virus allowed the precise delineation of the 5' and 3' extremities of Mimivirus mRNAs and revealed 75 new transcripts including several noncoding RNAs. Mimivirus genes are expressed across a wide dynamic range, in a finely regulated manner broadly described by three main temporal classes: early, intermediate, and late. This RNA-seq study confirmed the AAAATTGA sequence as an early promoter element, as well as the presence of palindromes at most of the polyadenylation sites. It also revealed a new promoter element correlating with late gene expression, which is also prominent in Sputnik, the recently described Mimivirus "virophage." These results-validated genome-wide by the hybridization of total RNA extracted from infected Acanthamoeba cells on a tiling array (Agilent)--will constitute the foundation on which to build subsequent functional studies of the Mimivirus/Acanthamoeba system.


Assuntos
Acanthamoeba/virologia , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Genes Virais , Mimiviridae/patogenicidade , RNA Mensageiro , Análise de Sequência de DNA , Animais , DNA Complementar/genética , DNA Complementar/metabolismo , Genoma Viral , Microscopia Eletrônica , Mimiviridae/genética , Mimiviridae/metabolismo , Mimiviridae/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírion/metabolismo , Vírion/ultraestrutura
9.
Science ; 376(6589): 156-162, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35389782

RESUMO

Whereas DNA viruses are known to be abundant, diverse, and commonly key ecosystem players, RNA viruses are insufficiently studied outside disease settings. In this study, we analyzed ≈28 terabases of Global Ocean RNA sequences to expand Earth's RNA virus catalogs and their taxonomy, investigate their evolutionary origins, and assess their marine biogeography from pole to pole. Using new approaches to optimize discovery and classification, we identified RNA viruses that necessitate substantive revisions of taxonomy (doubling phyla and adding >50% new classes) and evolutionary understanding. "Species"-rank abundance determination revealed that viruses of the new phyla "Taraviricota," a missing link in early RNA virus evolution, and "Arctiviricota" are widespread and dominant in the oceans. These efforts provide foundational knowledge critical to integrating RNA viruses into ecological and epidemiological models.


Assuntos
Genoma Viral , Vírus de RNA , Vírus , Evolução Biológica , Ecossistema , Oceanos e Mares , Filogenia , RNA , Vírus de RNA/genética , Viroma/genética , Vírus/genética
10.
Mol Ecol Resour ; 21(4): 1347-1358, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33434383

RESUMO

The Ocean Barcode Atlas (OBA) is a user friendly web service designed for biologists who wish to explore the biodiversity and biogeography of marine organisms locked in otherwise difficult to mine planetary scale DNA metabarcode data sets. Using just a web browser, a comprehensive picture of the diversity of a taxon or a barcode sequence is visualized graphically on world maps and interactive charts. Interactive results panels allow dynamic threshold adjustments and the display of diversity results in their environmental context measured at the time of sampling (temperature, oxygen, latitude, etc). Ecological analyses such as alpha and beta-diversity plots are produced via publication quality vector graphics representations. Currently, the Ocean Barcode Altas is deployed online with the (i) Tara Oceans eukaryotic 18S-V9 rDNA metabarcodes; (ii) Tara Oceans 16S/18S rRNA mi Tags; and (iii) 16S-V4 V5 metabarcodes collected during the Malaspina-2010 expedition. Additional prokaryotic or eukaryotic plankton barcode data sets will be added upon availability, given they provide the required complement of barcodes (including raw reads to compute barcode abundance) associated with their contextual environmental variables. Ocean Barcode Atlas is a freely-available web service at: http://oba.mio.osupytheas.fr/ocean-atlas/.


Assuntos
Organismos Aquáticos , Biodiversidade , Código de Barras de DNA Taxonômico , Organismos Aquáticos/classificação , Visualização de Dados , Internet , Oceanos e Mares , Plâncton , RNA Ribossômico 18S , Software
11.
Commun Biol ; 4(1): 604, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021239

RESUMO

The deep sea, the largest ocean's compartment, drives planetary-scale biogeochemical cycling. Yet, the functional exploration of its microbial communities lags far behind other environments. Here we analyze 58 metagenomes from tropical and subtropical deep oceans to generate the Malaspina Gene Database. Free-living or particle-attached lifestyles drive functional differences in bathypelagic prokaryotic communities, regardless of their biogeography. Ammonia and CO oxidation pathways are enriched in the free-living microbial communities and dissimilatory nitrate reduction to ammonium and H2 oxidation pathways in the particle-attached, while the Calvin Benson-Bassham cycle is the most prevalent inorganic carbon fixation pathway in both size fractions. Reconstruction of the Malaspina Deep Metagenome-Assembled Genomes reveals unique non-cyanobacterial diazotrophic bacteria and chemolithoautotrophic prokaryotes. The widespread potential to grow both autotrophically and heterotrophically suggests that mixotrophy is an ecologically relevant trait in the deep ocean. These results expand our understanding of the functional microbial structure and metabolic capabilities of the largest Earth aquatic ecosystem.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Ciclo do Carbono , DNA Bacteriano/genética , Metagenoma , Fotossíntese , Água do Mar/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , DNA Bacteriano/análise
12.
NAR Genom Bioinform ; 2(2): lqaa018, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33575578

RESUMO

Although bioluminescent bacteria are the most abundant and widely distributed of all light-emitting organisms, the biological role and evolutionary history of bacterial luminescence are still shrouded in mystery. Bioluminescence has so far been observed in the genomes of three families of Gammaproteobacteria in the form of canonical lux operons that adopt the CDAB(F)E(G) gene order. LuxA and luxB encode the two subunits of bacterial luciferase responsible for light-emission. Our deep exploration of public marine environmental databases considerably expands this view by providing a catalog of new lux homolog sequences, including 401 previously unknown luciferase-related genes. It also reveals a broader diversity of the lux operon organization, which we observed in previously undescribed configurations such as CEDA, CAED and AxxCE. This expanded operon diversity provides clues for deciphering lux operon evolution and propagation within the bacterial domain. Leveraging quantitative tracking of marine bacterial genes afforded by planetary scale metagenomic sampling, our study also reveals that the novel lux genes and operons described herein are more abundant in the global ocean than the canonical CDAB(F)E(G) operon.

13.
Nat Commun ; 10(1): 1014, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833550

RESUMO

Metagenomic sequencing has greatly improved our ability to profile the composition of environmental and host-associated microbial communities. However, the dependency of most methods on reference genomes, which are currently unavailable for a substantial fraction of microbial species, introduces estimation biases. We present an updated and functionally extended tool based on universal (i.e., reference-independent), phylogenetic marker gene (MG)-based operational taxonomic units (mOTUs) enabling the profiling of >7700 microbial species. As more than 30% of them could not previously be quantified at this taxonomic resolution, relative abundance estimates based on mOTUs are more accurate compared to other methods. As a new feature, we show that mOTUs, which are based on essential housekeeping genes, are demonstrably well-suited for quantification of basal transcriptional activity of community members. Furthermore, single nucleotide variation profiles estimated using mOTUs reflect those from whole genomes, which allows for comparing microbial strain populations (e.g., across different human body sites).


Assuntos
Metagenômica , Microbiota/genética , Filogenia , Algoritmos , Análise por Conglomerados , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Genes Essenciais , Marcadores Genéticos , Genoma , Interações entre Hospedeiro e Microrganismos , Humanos , Anotação de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
14.
Nat Biotechnol ; 37(1): 29-37, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30556814

RESUMO

We present an extension of the Minimum Information about any (x) Sequence (MIxS) standard for reporting sequences of uncultivated virus genomes. Minimum Information about an Uncultivated Virus Genome (MIUViG) standards were developed within the Genomic Standards Consortium framework and include virus origin, genome quality, genome annotation, taxonomic classification, biogeographic distribution and in silico host prediction. Community-wide adoption of MIUViG standards, which complement the Minimum Information about a Single Amplified Genome (MISAG) and Metagenome-Assembled Genome (MIMAG) standards for uncultivated bacteria and archaea, will improve the reporting of uncultivated virus genomes in public databases. In turn, this should enable more robust comparative studies and a systematic exploration of the global virosphere.


Assuntos
Genoma Viral , Genômica/métodos , Cultura de Vírus , Vírus/genética , Vírus/isolamento & purificação , Bases de Dados Genéticas
15.
Mol Cell Biol ; 25(15): 6346-54, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16024774

RESUMO

Activation of ubiquitination occurs during spermatogenesis and is dependent on the induction of isoforms of the UBC4 family of ubiquitin-conjugating enzymes. The UBC4-testis isoform is testis specific, is induced in round spermatids, and demonstrates biochemical functions distinct from a ubiquitously expressed isoform UBC4-1. To explore further the function of UBC4-testis, mice bearing inactivation of this gene were produced. Homozygous (-/-) mice showed normal body growth and fertility. Although testis weight and morphology were normal in testes from adult mice, examination of young mice during the first wave of spermatogenesis revealed that testes were approximately 10% smaller in weight at 40 and 45 days of age but had become normal at 65 days of age. Overall protein content, levels of ubiquitinated proteins, and ubiquitin-conjugating activity did not differ between wild-type and homozygous (-/-) mice. Spermatid number, as well as the motility of spermatozoa isolated from the epididymis, was also normal in homozygous (-/-) mice. To determine whether the germ cells lacking UBC4-testis might be more sensitive to stress, testes from wild-type and knockout mice were exposed to heat stress by implantation in the abdominal cavity. Testes from both strains of mice showed similar rates of degeneration in response to heat. The lack of an obvious phenotype did not appear to be due to induction of other UBC4 isoforms, as shown by two-dimensional gel immunoblotting. Our data indicate that UBC4-testis plays a role in early maturation of the testis and suggest that the many UBC4 isoforms have mixed redundant and specific functions.


Assuntos
Fertilidade/genética , Espermatogênese/genética , Testículo/crescimento & desenvolvimento , Enzimas de Conjugação de Ubiquitina/deficiência , Enzimas de Conjugação de Ubiquitina/genética , Animais , Feminino , Fertilidade/fisiologia , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Espermatogênese/fisiologia , Testículo/enzimologia , Testículo/metabolismo , Enzimas de Conjugação de Ubiquitina/fisiologia
16.
Viruses ; 10(9)2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30217078

RESUMO

"Megaviridae" is a proposed family of giant viruses infecting unicellular eukaryotes. These viruses are ubiquitous in the sea and have impact on marine microbial community structure and dynamics through their lytic infection cycle. However, their diversity and biogeography have been poorly characterized due to the scarce detection of Megaviridae sequences in metagenomes, as well as the limitation of reference sequences used to design specific primers for this viral group. Here, we propose a set of 82 degenerated primers (referred to as MEGAPRIMER), targeting DNA polymerase genes (polBs) of Megaviridae. MEGAPRIMER was designed based on 921 Megaviridae polBs from sequenced genomes and metagenomes. By applying this primer set to environmental DNA meta-barcoding of a coastal seawater sample, we report 5595 non-singleton operational taxonomic units (OTUs) of Megaviridae at 97% nucleotide sequence identity. The majority of the OTUs were found to form diverse clades, which were phylogenetically distantly phylogenetically related to known viruses such as Mimivirus. The Megaviridae OTUs detected in this study outnumber the giant virus OTUs identified in previous individual studies by more than an order of magnitude. Hence, MEGAPRIMER represents a useful tool to study the diversity of Megaviridae at the population level in natural environments.


Assuntos
Biodiversidade , Vírus Gigantes/classificação , Vírus Gigantes/genética , Reação em Cadeia da Polimerase , Água do Mar/virologia , Microbiologia da Água , Biologia Computacional/métodos , Genoma Viral , Metagenoma , Metagenômica/métodos , Filogenia , Reação em Cadeia da Polimerase/métodos
17.
Microbes Environ ; 33(2): 162-171, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29806626

RESUMO

Since the discovery of the giant mimivirus, evolutionarily related viruses have been isolated or identified from various environments. Phylogenetic analyses of this group of viruses, tentatively referred to as the family "Megaviridae", suggest that it has an ancient origin that may predate the emergence of major eukaryotic lineages. Environmental genomics has since revealed that Megaviridae represents one of the most abundant and diverse groups of viruses in the ocean. In the present study, we compared the taxon richness and phylogenetic diversity of Megaviridae, Bacteria, and Archaea using DNA-dependent RNA polymerase as a common marker gene. By leveraging existing microbial metagenomic data, we found higher richness and phylogenetic diversity in this single viral family than in the two prokaryotic domains. We also obtained results showing that the evolutionary rate alone cannot account for the observed high diversity of Megaviridae lineages. These results suggest that the Megaviridae family has a deep co-evolutionary history with diverse marine protists since the early "Big-Bang" radiation of the eukaryotic tree of life.


Assuntos
Archaea/classificação , Bactérias/classificação , Biodiversidade , Vírus Gigantes/classificação , Oceanos e Mares , Filogenia , Archaea/genética , Bactérias/genética , Bases de Dados Genéticas , Evolução Molecular , Vírus Gigantes/genética , Metagenômica , RNA Polimerase II/genética
18.
ISME J ; 12(12): 3046, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30068936

RESUMO

The original version of this Article contained an error in the main text citations and reference list. These errors have now been corrected in both the PDF and HTML versions of the Article.

19.
ISME J ; 12(5): 1287-1295, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29382948

RESUMO

Viruses infecting microorganisms are ubiquitous and abundant in the ocean. However, it is unclear when and where the numerous viral particles we observe in the sea are produced and whether they are active. To address these questions, we performed time-series analyses of viral metagenomes and microbial metatranscriptomes collected over a period of 24 h at a Japanese coastal site. Through mapping the metatranscriptomic reads on three sets of viral genomes ((i) 878 contigs of Osaka Bay viromes (OBV), (ii) 1766 environmental viral genomes from marine viromes, and (iii) 2429 reference viral genomes), we revealed that all the local OBV contigs were transcribed in the host fraction. This indicates that the majority of viral populations detected in viromes are active, and suggests that virions are rapidly diluted as a result of diffusion, currents, and mixing. Our data further revealed a peak of cyanophage gene expression in the afternoon/dusk followed by an increase of genomes from their virions at night and less-coherent infectious patterns for viruses putatively infecting various groups of heterotrophs. This suggests that cyanophages drive the diel release of cyanobacteria-derived organic matter into the environment and viruses of heterotrophic bacteria might have adapted to the population-specific life cycles of hosts.


Assuntos
Bacteriófagos/genética , Genoma Viral , Água do Mar/virologia , Bacteriófagos/metabolismo , Cianobactérias/virologia , Perfilação da Expressão Gênica , Japão , Metagenoma , Metagenômica , Periodicidade , Vírion/genética
20.
Nat Commun ; 9(1): 310, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358710

RESUMO

Single-celled eukaryotes (protists) are critical players in global biogeochemical cycling of nutrients and energy in the oceans. While their roles as primary producers and grazers are well appreciated, other aspects of their life histories remain obscure due to challenges in culturing and sequencing their natural diversity. Here, we exploit single-cell genomics and metagenomics data from the circumglobal Tara Oceans expedition to analyze the genome content and apparent oceanic distribution of seven prevalent lineages of uncultured heterotrophic stramenopiles. Based on the available data, each sequenced genome or genotype appears to have a specific oceanic distribution, principally correlated with water temperature and depth. The genome content provides hypotheses for specialization in terms of cell motility, food spectra, and trophic stages, including the potential impact on their lifestyles of horizontal gene transfer from prokaryotes. Our results support the idea that prominent heterotrophic marine protists perform diverse functions in ocean ecology.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa