Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Annu Rev Immunol ; 35: 53-84, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27912316

RESUMO

Helper T (Th) cell subsets direct immune responses by producing signature cytokines. Th2 cells produce IL-4, IL-5, and IL-13, which are important in humoral immunity and protection from helminth infection and are central to the pathogenesis of many allergic inflammatory diseases. Molecular analysis of Th2 cell differentiation and maintenance of function has led to recent discoveries that have refined our understanding of Th2 cell biology. Epigenetic regulation of Gata3 expression by chromatin remodeling complexes such as Polycomb and Trithorax is crucial for maintaining Th2 cell identity. In the context of allergic diseases, memory-type pathogenic Th2 cells have been identified in both mice and humans. To better understand these disease-driving cell populations, we have developed a model called the pathogenic Th population disease induction model. The concept of defined subsets of pathogenic Th cells may spur new, effective strategies for treating intractable chronic inflammatory disorders.


Assuntos
Helmintíase/imunologia , Hipersensibilidade/imunologia , Células Th2/imunologia , Animais , Diferenciação Celular , Modelos Animais de Doenças , Epigênese Genética , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Imunidade Humoral , Memória Imunológica , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Camundongos , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo
2.
Annu Rev Immunol ; 30: 707-31, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22224760

RESUMO

T helper cell differentiation occurs in the context of the extracellular cytokine milieu evoked by diverse microbes and other pathogenic stimuli along with T cell receptor stimulation. The culmination of these signals results in specification of T helper lineages, which occurs through the combinatorial action of multiple transcription factors that establish distinctive transcriptomes. In this manner, inducible, but constitutively active, master regulators work in conjunction with factors such as the signal transducer and activator of transcriptions (STATs) that sense the extracellular environment. The acquisition of a distinctive transcriptome also depends on chromatin modifications that impact key cis elements as well as the changes in global genomic organization. Thus, signal transduction and epigenetics are linked in these processes of differentiation. In this review, recent advances in understanding T helper lineage specification and deciphering the action of transcription factors are summarized with emphasis on comprehensive views of the dynamic T cell epigenome.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Transcrição Gênica , Animais , Doenças Autoimunes/genética , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Linhagem da Célula/genética , Epigenômica , Humanos , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Elementos Reguladores de Transcrição , Linfócitos T Auxiliares-Indutores/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Nat Immunol ; 20(11): 1469-1480, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31591568

RESUMO

Tissue-resident memory T cells (TRM cells) are crucial mediators of adaptive immunity in nonlymphoid tissues. However, the functional heterogeneity and pathogenic roles of CD4+ TRM cells that reside within chronic inflammatory lesions remain unknown. We found that CD69hiCD103lo CD4+ TRM cells produced effector cytokines and promoted the inflammation and fibrotic responses induced by chronic exposure to Aspergillus fumigatus. Simultaneously, immunosuppressive CD69hiCD103hiFoxp3+ CD4+ regulatory T cells were induced and constrained the ability of pathogenic CD103lo TRM cells to cause fibrosis. Thus, lung tissue-resident CD4+ T cells play crucial roles in the pathology of chronic lung inflammation, and CD103 expression defines pathogenic effector and immunosuppressive tissue-resident cell subpopulations in the inflamed lung.


Assuntos
Comunicação Celular/imunologia , Tolerância Imunológica , Memória Imunológica , Fibrose Pulmonar/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos CD/metabolismo , Antígenos de Fungos/imunologia , Aspergillus fumigatus/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Cadeias alfa de Integrinas/metabolismo , Pulmão/citologia , Pulmão/imunologia , Pulmão/patologia , Masculino , Camundongos Transgênicos , Fibrose Pulmonar/patologia , Linfócitos T Reguladores/metabolismo
4.
Immunity ; 55(12): 2352-2368.e7, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36272417

RESUMO

Allergic conjunctivitis is a chronic inflammatory disease that is characterized by severe itch in the conjunctiva, but how neuro-immune interactions shape the pathogenesis of severe itch remains unclear. We identified a subset of memory-type pathogenic Th2 cells that preferentially expressed Il1rl1-encoding ST2 and Calca-encoding calcitonin-gene-related peptide (CGRP) in the inflammatory conjunctiva using a single-cell analysis. The IL-33-ST2 axis in memory Th2 cells controlled the axonal elongation of the peripheral sensory C-fiber and the induction of severe itch. Pharmacological blockade and genetic deletion of CGRP signaling in vivo attenuated scratching behavior. The analysis of giant papillae from patients with severe allergic conjunctivitis revealed ectopic lymphoid structure formation with the accumulation of IL-33-producing epithelial cells and CGRP-producing pathogenic CD4+ T cells accompanied by peripheral nerve elongation. Thus, the IL-33-ST2-CGRP axis directs severe itch with neuro-reconstruction in the inflammatory conjunctiva and is a potential therapeutic target for severe itch in allergic conjunctivitis.


Assuntos
Conjuntivite Alérgica , Neuropeptídeos , Humanos , Interleucina-33/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Peptídeo Relacionado com Gene de Calcitonina , Conjuntivite Alérgica/patologia , Células Th2 , Calcitonina , Prurido/patologia , Túnica Conjuntiva/patologia , Neurônios
5.
Immunity ; 53(4): 745-758.e4, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33010223

RESUMO

Innate immune responses rely on rapid and precise gene regulation mediated by accessibility of regulatory regions to transcription factors (TFs). In natural killer (NK) cells and other innate lymphoid cells, competent enhancers are primed during lineage acquisition, and formation of de novo enhancers characterizes the acquisition of innate memory in activated NK cells and macrophages. Here, we investigated how primed and de novo enhancers coordinate to facilitate high-magnitude gene induction during acute activation. Epigenomic and transcriptomic analyses of regions near highly induced genes (HIGs) in NK cells both in vitro and in a model of Toxoplasma gondii infection revealed de novo chromatin accessibility and enhancer remodeling controlled by signal-regulated TFs STATs. Acute NK cell activation redeployed the lineage-determining TF T-bet to de novo enhancers, independent of DNA-sequence-specific motif recognition. Thus, acute stimulation reshapes enhancer function through the combinatorial usage and repurposing of both lineage-determining and signal-regulated TFs to ensure an effective response.


Assuntos
Elementos Facilitadores Genéticos/genética , Elementos Facilitadores Genéticos/imunologia , Células Matadoras Naturais/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Animais , Cromatina/genética , Cromatina/imunologia , Feminino , Expressão Gênica/genética , Expressão Gênica/imunologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Toxoplasma/imunologia , Toxoplasmose/genética , Toxoplasmose/imunologia
6.
Immunity ; 49(1): 134-150.e6, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29958800

RESUMO

Memory T cells provide long-lasting protective immunity, and distinct subpopulations of memory T cells drive chronic inflammatory diseases such as asthma. Asthma is a chronic allergic inflammatory disease with airway remodeling including fibrotic changes. The immunological mechanisms that induce airway fibrotic changes remain unknown. We found that interleukin-33 (IL-33) enhanced amphiregulin production by the IL-33 receptor, ST2hi memory T helper 2 (Th2) cells. Amphiregulin-epidermal growth factor receptor (EGFR)-mediated signaling directly reprogramed eosinophils to an inflammatory state with enhanced production of osteopontin, a key profibrotic immunomodulatory protein. IL-5-producing memory Th2 cells and amphiregulin-producing memory Th2 cells appeared to cooperate to establish lung fibrosis. The analysis of polyps from patients with eosinophilic chronic rhinosinusitis revealed fibrosis with accumulation of amphiregulin-producing CRTH2hiCD161hiCD45RO+CD4+ Th2 cells and osteopontin-producing eosinophils. Thus, the IL-33-amphiregulin-osteopontin axis directs fibrotic responses in eosinophilic airway inflammation and is a potential target for the treatment of fibrosis induced by chronic allergic disorders.


Assuntos
Anfirregulina/imunologia , Eosinófilos/imunologia , Osteopontina/metabolismo , Fibrose Pulmonar/imunologia , Transdução de Sinais/imunologia , Células Th2/imunologia , Anfirregulina/biossíntese , Anfirregulina/metabolismo , Anfirregulina/farmacologia , Animais , Modelos Animais de Doenças , Receptores ErbB/metabolismo , Feminino , Memória Imunológica/imunologia , Imunomodulação , Interleucina-33/metabolismo , Camundongos , Rinite/imunologia , Rinite/patologia , Sinusite/imunologia , Sinusite/patologia , Transcrição Gênica/efeitos dos fármacos
7.
Immunity ; 46(6): 983-991.e4, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28623086

RESUMO

Host defense requires the specification of CD4+ helper T (Th) cells into distinct fates, including Th1 cells that preferentially produce interferon-γ (IFN-γ). IFN-γ, a member of a large family of anti-pathogenic and anti-tumor IFNs, induces T-bet, a lineage-defining transcription factor for Th1 cells, which in turn supports IFN-γ production in a feed-forward manner. Herein, we show that a cell-intrinsic role of T-bet influences how T cells perceive their secreted product in the environment. In the absence of T-bet, IFN-γ aberrantly induced a type I IFN transcriptomic program. T-bet preferentially repressed genes and pathways ordinarily activated by type I IFNs to ensure that its transcriptional response did not evoke an aberrant amplification of type I IFN signaling circuitry, otherwise triggered by its own product. Thus, in addition to promoting Th1 effector commitment, T-bet acts as a repressor in differentiated Th1 cells to prevent abberant autocrine type I IFN and downstream signaling.


Assuntos
Comunicação Autócrina , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Proteínas com Domínio T/metabolismo , Células Th1/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Proteínas com Domínio T/genética , Células Th1/microbiologia , Células Th1/virologia , Transcriptoma
8.
Proc Natl Acad Sci U S A ; 120(2): e2218345120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595680

RESUMO

CD4+ memory T cells are central to long-lasting protective immunity and are involved in shaping the pathophysiology of chronic inflammation. While metabolic reprogramming is critical for the generation of memory T cells, the mechanisms controlling the redox metabolism in memory T cell formation remain unclear. We found that reactive oxygen species (ROS) metabolism changed dramatically in T helper-2 (Th2) cells during the contraction phase in the process of memory T cell formation. Thioredoxin-interacting protein (Txnip), a regulator of oxidoreductase, regulated apoptosis by scavenging ROS via the nuclear factor erythroid 2-related factor 2 (Nrf2)-biliverdin reductase B (Blvrb) pathway. Txnip regulated the pathology of chronic airway inflammation in the lung by controlling the generation of allergen-specific pathogenic memory Th2 cells in vivo. Thus, the Txnip-Nrf2-Blvrb axis directs ROS metabolic reprogramming in Th2 cells and is a potential therapeutic target for intractable chronic inflammatory diseases.


Assuntos
Células T de Memória , Fator 2 Relacionado a NF-E2 , Humanos , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Inflamação , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(49): e2302903120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015852

RESUMO

Uncontrolled type 2 immunity by type 2 helper T (Th2) cells causes intractable allergic diseases; however, whether the interaction of CD4+ T cells shapes the pathophysiology of allergic diseases remains unclear. We identified a subset of Th2 cells that produced the serine proteases granzyme A and B early in differentiation. Granzymes cleave protease-activated receptor (Par)-1 and induce phosphorylation of p38 mitogen-activated protein kinase (MAPK), resulting in the enhanced production of IL-5 and IL-13 in both mouse and human Th2 cells. Ubiquitin-specific protease 7 (USP7) regulates IL-4-induced phosphorylation of STAT3, resulting in granzyme production during Th2 cell differentiation. Genetic deletion of Usp7 or Gzma and pharmacological blockade of granzyme B ameliorated allergic airway inflammation. Furthermore, PAR-1+ and granzyme+ Th2 cells were colocalized in nasal polyps from patients with eosinophilic chronic rhinosinusitis. Thus, the USP7-STAT3-granzymes-Par-1 pathway is a potential therapeutic target for intractable allergic diseases.


Assuntos
Hipersensibilidade , Células Th2 , Humanos , Animais , Camundongos , Granzimas/genética , Granzimas/metabolismo , Interleucina-5/metabolismo , Peptidase 7 Específica de Ubiquitina/metabolismo , Inflamação/metabolismo , Diferenciação Celular , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
10.
Immunity ; 44(1): 131-142, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26750311

RESUMO

Interleukin-23 (IL-23) is a pro-inflammatory cytokine required for the pathogenicity of T helper 17 (Th17) cells but the molecular mechanisms governing this process remain unclear. We identified the transcription factor Blimp-1 (Prdm1) as a key IL-23-induced factor that drove the inflammatory function of Th17 cells. In contrast to thymic deletion of Blimp-1, which causes T cell development defects and spontaneous autoimmunity, peripheral deletion of this transcription factor resulted in reduced Th17 activation and reduced severity of autoimmune encephalomyelitis. Furthermore, genome-wide occupancy and overexpression studies in Th17 cells revealed that Blimp-1 co-localized with transcription factors RORγt, STAT-3, and p300 at the Il23r, Il17a/f, and Csf2 cytokine loci to enhance their expression. Blimp-1 also directly bound to and repressed cytokine loci Il2 and Bcl6. Taken together, our results demonstrate that Blimp-1 is an essential transcription factor downstream of IL-23 that acts in concert with RORγt to activate the Th17 inflammatory program.


Assuntos
Regulação da Expressão Gênica/imunologia , Inflamação/imunologia , Ativação Linfocitária/imunologia , Células Th17/imunologia , Fatores de Transcrição/imunologia , Animais , Diferenciação Celular/imunologia , Separação Celular , Imunoprecipitação da Cromatina , Encefalomielite Autoimune Experimental/imunologia , Interleucina-23/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator 1 de Ligação ao Domínio I Regulador Positivo , Reação em Cadeia da Polimerase em Tempo Real , Transdução Genética
11.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35210367

RESUMO

Mounting evidence suggests that nematode infection can protect against disorders of immune dysregulation. Administration of live parasites or their excretory/secretory (ES) products has shown therapeutic effects across a wide range of animal models for immune disorders, including asthma. Human clinical trials of live parasite ingestion for the treatment of immune disorders have produced promising results, yet concerns persist regarding the ingestion of pathogenic organisms and the immunogenicity of protein components. Despite extensive efforts to define the active components of ES products, no small molecules with immune regulatory activity have been identified from nematodes. Here we show that an evolutionarily conserved family of nematode pheromones called ascarosides strongly modulates the pulmonary immune response and reduces asthma severity in mice. Screening the inhibitory effects of ascarosides produced by animal-parasitic nematodes on the development of asthma in an ovalbumin (OVA) murine model, we found that administration of nanogram quantities of ascr#7 prevented the development of lung eosinophilia, goblet cell metaplasia, and airway hyperreactivity. Ascr#7 suppressed the production of IL-33 from lung epithelial cells and reduced the number of memory-type pathogenic Th2 cells and ILC2s in the lung, both key drivers of the pathology of asthma. Our findings suggest that the mammalian immune system recognizes ascarosides as an evolutionarily conserved molecular signature of parasitic nematodes. The identification of a nematode-produced small molecule underlying the well-documented immunomodulatory effects of ES products may enable the development of treatment strategies for allergic diseases.


Assuntos
Inflamação/prevenção & controle , Nematoides/química , Traqueia/efeitos dos fármacos , Animais , Asma/fisiopatologia , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Hipersensibilidade/fisiopatologia , Inflamação/induzido quimicamente , Camundongos , Camundongos Endogâmicos BALB C , Nematoides/patogenicidade , Ovalbumina/efeitos adversos , Bibliotecas de Moléculas Pequenas/farmacologia , Traqueia/fisiopatologia
12.
Proc Natl Acad Sci U S A ; 119(33): e2203437119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35895716

RESUMO

The mortality of coronavirus disease 2019 (COVID-19) is strongly correlated with pulmonary vascular pathology accompanied by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-triggered immune dysregulation and aberrant activation of platelets. We combined histological analyses using field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy analyses of the lungs from autopsy samples and single-cell RNA sequencing of peripheral blood mononuclear cells to investigate the pathogenesis of vasculitis and immunothrombosis in COVID-19. We found that SARS-CoV-2 accumulated in the pulmonary vessels, causing exudative vasculitis accompanied by the emergence of thrombospondin-1-expressing noncanonical monocytes and the formation of myosin light chain 9 (Myl9)-containing microthrombi in the lung of COVID-19 patients with fatal disease. The amount of plasma Myl9 in COVID-19 was correlated with the clinical severity, and measuring plasma Myl9 together with other markers allowed us to predict the severity of the disease more accurately. This study provides detailed insight into the pathogenesis of vasculitis and immunothrombosis, which may lead to optimal medical treatment for COVID-19.


Assuntos
COVID-19 , Pulmão , Cadeias Leves de Miosina , SARS-CoV-2 , Índice de Gravidade de Doença , Tromboinflamação , Vasculite , COVID-19/sangue , COVID-19/complicações , COVID-19/patologia , Humanos , Leucócitos Mononucleares , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Cadeias Leves de Miosina/sangue , RNA-Seq , SARS-CoV-2/isolamento & purificação , Análise de Célula Única , Espectrometria por Raios X , Tromboinflamação/patologia , Tromboinflamação/virologia , Vasculite/patologia , Vasculite/virologia
13.
J Clin Immunol ; 44(4): 104, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647550

RESUMO

PURPOSE: Auto-antibodies (auto-abs) to type I interferons (IFNs) have been identified in patients with life-threatening coronavirus disease 2019 (COVID-19), suggesting that the presence of auto-abs may be a risk factor for disease severity. We therefore investigated the mechanism underlying COVID-19 exacerbation induced by auto-abs to type I IFNs. METHODS: We evaluated plasma from 123 patients with COVID-19 to measure auto-abs to type I IFNs. We performed single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells from the patients with auto-abs and conducted epitope mapping of the auto-abs. RESULTS: Three of 19 severe and 4 of 42 critical COVID-19 patients had neutralizing auto-abs to type I IFNs. Patients with auto-abs to type I IFNs showed no characteristic clinical features. scRNA-seq from 38 patients with COVID-19 revealed that IFN signaling in conventional dendritic cells and canonical monocytes was attenuated, and SARS-CoV-2-specific BCR repertoires were decreased in patients with auto-abs. Furthermore, auto-abs to IFN-α2 from COVID-19 patients with auto-abs recognized characteristic epitopes of IFN-α2, which binds to the receptor. CONCLUSION: Auto-abs to type I IFN found in COVID-19 patients inhibited IFN signaling in dendritic cells and monocytes by blocking the binding of type I IFN to its receptor. The failure to properly induce production of an antibody to SARS-CoV-2 may be a causative factor of COVID-19 severity.


Assuntos
Autoanticorpos , COVID-19 , Interferon Tipo I , Células Mieloides , Feminino , Humanos , Masculino , Autoanticorpos/imunologia , Autoanticorpos/sangue , COVID-19/imunologia , Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Células Mieloides/imunologia , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Transdução de Sinais/imunologia
14.
Nat Immunol ; 13(6): 587-95, 2012 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-22544395

RESUMO

Distinct CD4(+) T cell subsets are critical for host defense and immunoregulation. Although these subsets can act as terminally differentiated lineages, they have been increasingly noted to demonstrated plasticity. MicroRNAs are factors that control T cell stability and plasticity. Here we report that naturally occurring regulatory T cells (T(reg) cells) had high expression of the microRNA miR-10a and that miR-10a was induced by retinoic acid and transforming growth factor-ß (TGF-ß) in inducible T(reg) cells. By simultaneously targeting the transcriptional repressor Bcl-6 and the corepressor Ncor2, miR-10a attenuated the phenotypic conversion of inducible T(reg) cells into follicular helper T cells. We also found that miR-10a limited differentiation into the T(H)17 subset of helper T cells and therefore represents a factor that can fine-tune the plasticity and fate of helper T cells.


Assuntos
MicroRNAs/biossíntese , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Tretinoína/farmacologia , Animais , Diferenciação Celular/imunologia , Regulação para Baixo/imunologia , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/imunologia , Correpressor 2 de Receptor Nuclear/imunologia , Fenótipo , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , RNA Mensageiro/biossíntese , RNA Mensageiro/química , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas com Domínio T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/fisiologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/fisiologia , Transcrição Gênica
15.
Immunity ; 42(2): 294-308, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25692703

RESUMO

Memory CD4(+) T helper (Th) cells provide long-term protection against pathogens and are essential for the development of vaccines; however, some antigen-specific memory Th cells also drive immune-related pathology, including asthma. The mechanisms regulating the pathogenicity of memory Th cells remain poorly understood. We found that interleukin-33 (IL-33)-ST2 signals selectively licensed memory Th2 cells to induce allergic airway inflammation via production of IL-5 and that the p38 MAP kinase pathway was a central downstream target of IL-33-ST2 in memory Th2 cells. In addition, we found that IL-33 induced upregulation of IL-5 by memory CD4(+) T cells isolated from nasal polyps of patients with eosinophilic chronic rhinosinusitis. Thus, IL-33-ST2-p38 signaling appears to directly instruct pathogenic memory Th2 cells to produce IL-5 and induce eosinophilic inflammation.


Assuntos
Asma/imunologia , Interleucina-5/imunologia , Interleucinas/imunologia , Receptores de Interleucina/imunologia , Células Th2/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Animais , Asma/patologia , Células Cultivadas , Humanos , Memória Imunológica/imunologia , Inflamação/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Interleucina-5/biossíntese , Interleucinas/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pólipos Nasais/imunologia , Eosinofilia Pulmonar/imunologia , Interferência de RNA , RNA Interferente Pequeno , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Interleucina/genética , Sinusite/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética
16.
Immunity ; 42(5): 877-89, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25992861

RESUMO

Interleukin-6 (IL-6) and IL-27 signal through a shared receptor subunit and employ the same downstream STAT transcription proteins, but yet are ascribed unique and overlapping functions. To evaluate the specificity and redundancy for these cytokines, we quantified their global transcriptomic changes and determined the relative contributions of STAT1 and STAT3 using genetic models and chromatin immunoprecipitation-sequencing (ChIP-seq) approaches. We found an extensive overlap of the transcriptomes induced by IL-6 and IL-27 and few examples in which the cytokines acted in opposition. Using STAT-deficient cells and T cells from patients with gain-of-function STAT1 mutations, we demonstrated that STAT3 is responsible for the overall transcriptional output driven by both cytokines, whereas STAT1 is the principal driver of specificity. STAT1 cannot compensate in the absence of STAT3 and, in fact, much of STAT1 binding to chromatin is STAT3 dependent. Thus, STAT1 shapes the specific cytokine signature superimposed upon STAT3's action.


Assuntos
Cromatina/metabolismo , Citocinas/metabolismo , Regulação da Expressão Gênica/imunologia , Modelos Imunológicos , Fatores de Transcrição STAT/metabolismo , Animais , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Cromatina/química , Humanos , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fator de Transcrição STAT1/química , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Transcriptoma
17.
Nat Immunol ; 12(3): 247-54, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21278738

RESUMO

Interleukin 2 (IL-2), a cytokine linked to human autoimmune disease, limits IL-17 production. Here we found that deletion of the gene encoding the transcription factor STAT3 in T cells abrogated IL-17 production and attenuated autoimmunity associated with IL-2 deficiency. Whereas STAT3 induced IL-17 and the transcription factor RORγt and inhibited the transcription factor Foxp3, IL-2 inhibited IL-17 independently of Foxp3 and RORγt. STAT3 and STAT5 bound to multiple common sites across the locus encoding IL-17. The induction of STAT5 binding by IL-2 was associated with less binding of STAT3 at these sites and the inhibition of associated active epigenetic marks. 'Titration' of the relative activation of STAT3 and STAT5 modulated the specification of cells to the IL-17-producing helper T cell (T(H)17 cell) subset. Thus, the balance rather than the absolute magnitude of these signals determined the propensity of cells to make a key inflammatory cytokine.


Assuntos
Regulação da Expressão Gênica , Interleucina-17/genética , Interleucina-17/imunologia , Fator de Transcrição STAT3/imunologia , Fator de Transcrição STAT5/imunologia , Linfócitos T/imunologia , Animais , Diferenciação Celular , Citometria de Fluxo , Loci Gênicos , Humanos , Immunoblotting , Interleucina-2/genética , Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
J Allergy Clin Immunol ; 150(4): 850-860.e5, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35863510

RESUMO

BACKGROUND: Allergic rhinitis is a growing problem worldwide. Currently the only treatment that can modify the disease is antigen-specific immunotherapy, but its mechanism of action is not fully understood. OBJECTIVE: We comprehensively investigated the role and changes of antigen-specific T cells before and after sublingual immunotherapy (SLIT) for Japanese cedar pollinosis. METHODS: We cultured peripheral blood mononuclear cells obtained both before and 1 year after initiating SLIT and used a combination of single-cell RNA sequencing and repertoire sequencing. To investigate biomarkers, we used cells from patients participating a phase 2/3 trial of SLIT tablets for Japanese cedar pollinosis and cells from outpatients with good and poor response. RESULTS: Antigen-stimulated culturing after SLIT led to clonal expansion of TH2 and regulatory T cells, and most of these CD4+ T cells retained their CDR3 regions before and after treatment, indicating antigen-specific clonal responses and differentiation resulting from SLIT. However, SLIT reduced the number of clonal functional TH2 cells but increased the trans-type TH2 cell population that expresses musculin (MSC), TGF-ß, and IL-2. Trajectory analysis suggested that SLIT induced clonal differentiation of the trans-type TH2 cells differentiated into regulatory T cells. Using real-time PCR, we found that the MSC levels increased in the active SLIT group and those with good response after 1 year of treatment. CONCLUSION: The combination of single-cell RNA sequencing and repertoire analysis helped reveal part of the underlying mechanism: SLIT promotes the expression of MSC on pathogenic TH2 cells and suppresses their function. MSC may be a potential biomarker of SLIT for allergic rhinitis.


Assuntos
Cryptomeria , Rinite Alérgica Sazonal , Rinite Alérgica , Imunoterapia Sublingual , Alérgenos , Biomarcadores , Humanos , Fatores Imunológicos , Interleucina-2 , Leucócitos Mononucleares , Rinite Alérgica/metabolismo , Rinite Alérgica/terapia , Rinite Alérgica Sazonal/terapia , Imunoterapia Sublingual/métodos , Fator de Crescimento Transformador beta
19.
Allergol Int ; 72(4): 564-572, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37147165

RESUMO

BACKGROUND: Chronic rhinosinusitis is a common disease of the nasal cavity and is classified into two major endotypes, which are neutrophilic and eosinophilic. Some patients with neutrophilic and eosinophilic chronic rhinosinusitis are refractory to treatment, and the mechanism of drug resistance is not completely understood. METHODS: Nasal polyp samples were collected from patients with non-eosinophilic chronic rhinosinusitis (nECRS) and eosinophilic chronic rhinosinusitis (ECRS). Transcriptomic and proteomic analyses were performed simultaneously. Gene Ontology (GO) analysis was conducted to extract genes involved in drug resistance. Then, GO analysis results were validated via real-time polymerase chain reaction and immunohistochemistry analysis. RESULTS: The nasal polyps of patients with ECRS were enriched with 110 factors in the genes and 112 in the proteins, unlike in those of patients with nECRS. GO analysis on the combined results of both showed that the factors involved in extracellular transportation were enriched. Our analysis focused on multidrug resistance protein 1-5 (MRP1-5). Real-time polymerase chain reaction revealed that the MRP4 expression was significantly upregulated in ECRS polyps. Immunohistochemical staining showed that the MRP3 and MRP4 expressions significantly increased in nECRS and ECRS, respectively. MRP3 and MRP4 expressions were positively correlated with the number of neutrophil and eosinophil infiltrates in polyps and associated with the tendency to relapse in patients with ECRS. CONCLUSIONS: MRP is associated with treatment resistance and is expressed in nasal polyps. The expression pattern had different features based on chronic rhinosinusitis endotype. Therefore, drug resistance factors can be associated with therapeutic outcomes.


Assuntos
Pólipos Nasais , Rinite , Humanos , Rinite/complicações , Pólipos Nasais/metabolismo , Proteômica , Eosinófilos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Doença Crônica
20.
Int Immunol ; 33(12): 699-704, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34427648

RESUMO

CD4+ T cells not only direct immune responses against infectious micro-organisms but are also involved in the pathogenesis of inflammatory diseases. In the last two to three decades, various researchers have identified and characterized several functional CD4+ T-cell subsets, including T-helper 1 (Th1), Th2, Th9 and Th17 cells and regulatory T (Treg) cells. In this mini-review, we introduce the concept of pathogenic Th cells that induce inflammatory diseases with a model of disease induction by a population of pathogenic Th cells: the 'pathogenic Th population disease-induction model'. We will focus on Th2 cells that induce allergic airway inflammation-pathogenic Th2 cells (Tpath2 cells)-and discuss the nature of Tpath2 cells that shape the pathology of chronic inflammatory diseases. Various Tpath2-cell subsets have been identified and their unique features are summarized in mouse and human systems. Second, we will discuss how Th cells migrate and are maintained in chronic inflammatory lesions. We propose a model known as the 'CD69-Myl9 system'. CD69 is a cell surface molecule expressed on activated T cells and interaction with its ligand myosin light chain 9 (Myl9) is required for the induction of inflammatory diseases. Myl9 molecules in the small vessels of inflamed lungs may play a crucial role in the migration of activated T cells into inflammatory lesions. Emerging evidence may provide new insight into the pathogenesis of chronic inflammatory diseases and contribute to the development of new therapeutic strategies for intractable inflammatory disorders.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Linfócitos T CD4-Positivos/imunologia , Inflamação/imunologia , Lectinas Tipo C/imunologia , Cadeias Leves de Miosina/imunologia , Linfócitos T Reguladores/imunologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa