Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 470, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36192701

RESUMO

BACKGROUND: Japanese larch (Larix kaempferi) is an economically important deciduous conifer species that grows in cool-temperate forests and is endemic to Japan. Kuril larch (L. gmelinii var. japonica) is a variety of Dahurian larch that is naturally distributed in the Kuril Islands and Sakhalin. The hybrid larch (L. gmelinii var. japonica × L. kaempferi) exhibits heterosis, which manifests as rapid juvenile growth and high resistance to vole grazing. Since these superior characteristics have been valued by forestry managers, the hybrid larch is one of the most important plantation species in Hokkaido. To accelerate molecular breeding in these species, we collected and compared full-length cDNA isoforms (Iso-Seq) and RNA-Seq short-read, and merged them to construct candidate gene as reference for both Larix species. To validate the results, candidate protein-coding genes (ORFs) related to some flowering signal-related genes ​were screened from the reference sequences, and the phylogenetic relationship with closely related species was elucidated. RESULTS: Using the isoform sequencing of PacBio RS ll and the de novo assembly of RNA-Seq short-read sequences, we identified 50,690 and 38,684 ORFs in Japanese larch and Kuril larch, respectively. BUSCO completeness values were 90.5% and 92.1% in the Japanese and Kuril larches, respectively. After comparing the collected ORFs from the two larch species, a total of 19,813 clusters, comprising 22,571 Japanese larch ORFs and 22,667 Kuril larch ORFs, were contained in the intersection of the Venn diagram. In addition, we screened several ORFs related to flowering signals (SUPPRESSER OF OVEREXPRESSION OF CO1: SOC1, LEAFY: LFY, FLOWERING Locus T: FT, CONSTANCE: CO) from both reference sequences, and very similar found in other species. CONCLUSIONS: The collected ORFs will be useful as reference sequences for molecular breeding of Japanese and Kuril larches, and also for clarifying the evolution of the conifer genome and investigating functional genomics.


Assuntos
Larix , DNA Complementar , Japão , Larix/genética , Filogenia , Transcriptoma
2.
BMC Plant Biol ; 19(1): 424, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615405

RESUMO

BACKGROUND: Pine wilt disease (PWD), which is caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus, is currently the greatest threat to pine forests in Europe and East Asian countries including Japan. Constructing a detailed linkage map of DNA markers and identifying PWD resistance genes/loci lead to improved resistance in Pinus thunbergii, as well as other Pinus species that are also susceptible to PWD. RESULTS: A total F1 mapping population of 188 individuals derived from a cross between the PWD-resistant P. thunbergii varieties 'Tanabe 54' (resistant rank 2 to PWD) and 'Tosashimizu 63' (resistant rank 4 to PWD) was inoculated with PWN, and was evaluated for disease symptoms. To perform linkage analysis for PWN resistance, a set of three maps was constructed; two parental maps generated using the integrated two-way pseudo-testcross method, and a consensus map with population-type cross-pollination. The linkage map of 'Tanabe 54' consisted of 167 loci, and covered 14 linkage groups (LGs), with a total genetic distance of 1214.6 cM. The linkage map of 'Tosashimizu 63' consisted of 252 loci, and covered 14 LGs, with a total genetic distance of 1422.1 cM. The integrated consensus map comprised 12 LGs with the basic chromosome number of P. thunbergii, and a total genetic distance of 1403.6 cM. Results from quantitative trait loci (QTL) analysis using phenotype data and linkage maps indicated that PWN resistance is controlled by a single dominant allele, which was derived from the 'Tanabe 54' female parent. This major QTL was located on linkage group 3 and was designated PWD1 for PINE WILT DISEASE 1. CONCLUSIONS: The PWD1 locus is a major resistance QTL located on the Pinus consensus LG03 that acts in a dominant manner to confer pine wood nematode resistance. Information from the present study will be useful for P. thunbergii breeding programs to improve resistance to PWD, and also to help identify susceptibility genes in Pinus species.


Assuntos
Ligação Genética , Pinus/genética , Doenças das Plantas/genética , Tylenchida/fisiologia , Animais , Mapeamento Cromossômico , Pinus/parasitologia , Doenças das Plantas/parasitologia
3.
BMC Genomics ; 19(1): 277, 2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29685102

RESUMO

BACKGROUND: Japanese cedar (Cryptomeria japonica) is an important tree for Japanese forestry. Male-sterile marker development in Japanese cedar would facilitate selection of male-sterile plus trees, addressing the widespread social problem of pollinosis and facilitating the identification of heterozygotes, which are useful for breeding. RESULTS: This study used next-generation sequencing for single-nucleotide polymorphism discovery in libraries constructed from several organs, including male-sterile and male-fertile strobili. The single-nucleotide polymorphisms obtained were used to construct a high-density linkage map, which enabled identification of a locus on linkage group 9 strongly correlated with male-sterile trait. Expressed sequence tags corresponding to 11 marker loci from 5 isotigs were associated with this locus within 33.4-34.5 cM. These marker loci explained 100% of the phenotypic variation. Several homologs of these sequences are associated with male sterility in rice or Arabidopsis, including a pre-mRNA splicing factor, a DEAD-box protein, a glycosyl hydrolase, and a galactosyltransferase. These proteins are thus candidates for the causal male-sterile gene at the ms-1 locus. After we used a SNaPshot assay to develop markers for marker-assisted selection (MAS), we tested F2 progeny between male-sterile and wild-type plus trees to validate the markers and extrapolated the testing to a larger plus-tree population. We found that two developed from one of the candidates for the causal gene were suitable for MAS. CONCLUSIONS: More than half of the ESTs and SNPs we collected were new, enlarging the genomic basis for genetic research on Japanese cedar. We developed two SNP markers aimed at MAS that distinguished individuals carrying the male-sterile trait with 100% accuracy, as well as individuals heterozygous at the male-sterile locus, even outside the mapping population. These markers should enable practical MAS for conifer breeding.


Assuntos
Cryptomeria/genética , Cryptomeria/fisiologia , Genes de Plantas/genética , Marcadores Genéticos/genética , Infertilidade das Plantas/genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Polimorfismo de Nucleotídeo Único
4.
BMC Plant Biol ; 18(1): 201, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30231856

RESUMO

BACKGROUND: Adventitious root formation is an essential physiological process for successful propagation of cuttings in various plant species. Because coniferous species are highly heterozygous, propagation of cuttings is of great practical use in breeding. Although various factors influence adventitious root formation, little is known of the associated regulatory mechanisms. Whereas adventitious roots generally form from the base of cuttings, this process is accompanied by physiological changes in leaves, which supply assimilates and metabolites. Herein, we present microarray analyses of transcriptome dynamics during adventitious root formation in whole cuttings in the coniferous species, Cryptomeria japonica. RESULTS: Temporal patterns of gene expression were determined in the base, the middle, and needles of cuttings at eight time points during adventitious root formation. Global gene expression at the base had diverged from that in the middle by 3-h post-insertion, and changed little in the subsequent 3-days post-insertion, and global gene expression in needles altered characteristically at 3- and 6-weeks post-insertion. In Gene Ontology enrichment analysis of major gene clusters based on hierarchical clustering, the expression profiles of genes related to carbohydrates, plant hormones, and other categories indicated multiple biological changes that were involved in adventitious root formation. CONCLUSIONS: The present comprehensive transcriptome analyses indicate major transcriptional turning and contribute to the understanding of the biological processes and molecular factors that influence adventitious root formation in C. japonica.


Assuntos
Cryptomeria/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Cryptomeria/crescimento & desenvolvimento , Metabolismo Energético/genética , Perfilação da Expressão Gênica , Melhoramento Vegetal , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo
5.
Microb Ecol ; 72(3): 669-81, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27461253

RESUMO

Pine wilt disease (PWD) results from the interaction of three elements: the pathogenic nematode, Bursaphelenchus xylophilus; the insect-vector, Monochamus sp.; and the host tree, mostly Pinus species. Bacteria isolated from B. xylophilus may be a fourth element in this complex disease. However, the precise role of bacteria in this interaction is unclear as both plant-beneficial and as plant-pathogenic bacteria may be associated with PWD. Using whole genome sequencing and phenotypic characterization, we were able to investigate in more detail the genetic repertoire of Serratia marcescens PWN146, a bacterium associated with B. xylophilus. We show clear evidence that S. marcescens PWN146 is able to withstand and colonize the plant environment, without having any deleterious effects towards a susceptible host (Pinus thunbergii), B. xylophilus nor to the nematode model C. elegans. This bacterium is able to tolerate growth in presence of xenobiotic/organic compounds, and use phenylacetic acid as carbon source. Furthermore, we present a detailed list of S. marcescens PWN146 potentials to interfere with plant metabolism via hormonal pathways and/or nutritional acquisition, and to be competitive against other bacteria and/or fungi in terms of resource acquisition or production of antimicrobial compounds. Further investigation is required to understand the role of bacteria in PWD. We have now reinforced the theory that B. xylophilus-associated bacteria may have a plant origin.


Assuntos
Endófitos , Estilo de Vida , Infecções Oportunistas , Pinus/microbiologia , Serratia marcescens/isolamento & purificação , Serratia marcescens/fisiologia , Serratia marcescens/patogenicidade , Tylenchida/microbiologia , Animais , Anti-Infecciosos , Antinematódeos/farmacologia , Sequência de Bases , Classificação , Besouros/microbiologia , DNA Bacteriano , Genes Bacterianos , Interações Hospedeiro-Parasita/fisiologia , Insetos Vetores/microbiologia , Microscopia Confocal , Microscopia Eletrônica de Varredura , Anotação de Sequência Molecular , Nematoides/patogenicidade , Filogenia , Pinus/parasitologia , Doenças das Plantas/microbiologia , Serratia marcescens/genética , Árvores/microbiologia , Árvores/parasitologia , Tylenchida/efeitos dos fármacos , Tylenchida/patogenicidade
6.
BMC Plant Biol ; 12: 13, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22272988

RESUMO

BACKGROUND: Pine wilt disease is caused by the pine wood nematode, Bursaphelenchus xylophilus, which threatens pine forests and forest ecosystems worldwide and causes serious economic losses. In the 40 years since the pathogen was identified, the physiological changes occurring as the disease progresses have been characterized using anatomical and biochemical methods, and resistant trees have been selected via breeding programs. However, no studies have assessed the molecular genetics, e.g. transcriptional changes, associated with infection-induced physiological changes in resistant or susceptible trees. RESULTS: We constructed seven subtractive suppression hybridization (SSH) cDNA libraries using time-course sampling of trees inoculated with pine wood nematode at 1, 3, or 7 days post-inoculation (dpi) in susceptible trees and at 1, 3, 7, or 14 dpi in resistant trees. A total of 3,299 sequences was obtained from these cDNA libraries, including from 138 to 315 non-redundant sequences in susceptible SSH libraries and from 351 to 435 in resistant SSH libraries. Using Gene Ontology hierarchy, those non-redundant sequences were classified into 15 subcategories of the biological process Gene Ontology category and 17 subcategories of the molecular function category. The transcriptional components revealed by the Gene Ontology classification clearly differed between resistant and susceptible libraries. Some transcripts were discriminative: expression of antimicrobial peptide and putative pathogenesis-related genes (e.g., PR-1b, 2, 3, 4, 5, 6) was much higher in susceptible trees than in resistant trees at every time point, whereas expression of PR-9, PR-10, and cell wall-related genes (e.g., for hydroxyproline-rich glycoprotein precursor and extensin) was higher in resistant trees than in susceptible trees at 7 and 14 dpi. CONCLUSIONS: Following inoculation with pine wood nematode, there were marked differences between resistant and susceptible trees in transcript diversity and the timing and level of transcripts expressed in common; in particular, expression of stress response and defense genes differed. This study provided new insight into the differences in the physiological changes between resistant and susceptible trees that have been observed in anatomical and biochemical studies.


Assuntos
Nematoides/patogenicidade , Hibridização de Ácido Nucleico/métodos , Pinus/genética , Pinus/parasitologia , Animais , Etiquetas de Sequências Expressas , Doenças das Plantas/genética , Doenças das Plantas/parasitologia
7.
Am J Bot ; 99(8): e317-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22859657

RESUMO

PREMISE OF THE STUDY: Microsatellite markers were developed for the endemic Japanese species Thujopsis dolabrata var. hondai for studies on forest ecology and tree breeding. METHODS AND RESULTS: We characterized 10 dinucleotide microsatellite loci by screening primers developed using a simple sequence repeat-enriched library. The number of alleles per locus ranged from eight to 44 with an average of 20.3. The observed and expected heterozygosities ranged from 0.326 to 0.854 and from 0.670 to 0.976, respectively. CONCLUSIONS: The development of these markers can be used to assess useful genetic information for ecological studies and tree breeding in T. dolabrata var. hondai.


Assuntos
Cupressaceae/genética , Primers do DNA/genética , Repetições de Microssatélites/genética , Polimorfismo Genético , Alelos , Sequência de Bases , Cupressaceae/classificação , DNA de Plantas/genética , Biblioteca Gênica , Loci Gênicos , Marcadores Genéticos , Dados de Sequência Molecular , Análise de Sequência de DNA , Especificidade da Espécie
8.
Front Plant Sci ; 13: 850660, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463400

RESUMO

Identifying genes/loci for resistance to pine wilt disease (PWD) caused by the pine wood nematode (PWN) is beneficial for improving resistance breeding in Pinus thunbergii, but to date, genetic information using molecular markers has been limited. Here, we constructed a high-density linkage map using genotyping-by-sequencing (GBS) and conducted quantitative trait loci (QTL) analysis for PWD resistance for the self-pollinated progeny of "Namikata 73," which is the most resistant variety among resistant varieties of P. thunbergii, following inoculation tests with PWN. An S1 mapping population consisting of the 116 progenies derived from self-pollination of the resistant variety, "Namikata 73" (resistance rank 5 to PWN), was inoculated with PWN isolate Ka-4 and evaluated for disease symptoms. To construct a high-density linkage map, we used single-nucleotide polymorphisms (SNPs) identified by GBS based on next-generation sequencing technology and some anchor DNA markers, expressed sequence tag (EST)-derived SNP markers and EST-derived simple sequence repeat (SSR) markers, and genomic SSR markers. The linkage map had 13 linkage groups (LGs) consisting of 2,365 markers including 2,243 GBS-SNP markers over a total map distance of 1968.4 centimorgans (cM). Results from QTL analysis using phenotype data and the linkage map indicated that PWD resistance is controlled by a single locus located on LG-3, as identified in a previous study. This locus showed overdominant genetic action in the present study. With the confirmation of PWD1 in two different mapping populations (present study and a previous study), the locus associated with this region is thought to be a good target for marker-assisted selection in P. thunbergii breeding programs in order to obtain high levels of resistance to PWD caused by PWN.

9.
Curr Genet ; 55(3): 311-21, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19449186

RESUMO

Wogon-Sugi has been reported as a cytoplasmically inherited virescent mutant selected from a horticultural variety of Cryptomeria japonica. Although previous studies of plastid structure and inheritance indicated that at least some mutations are encoded by the chloroplast genome, the causative gene responsible for the primary chlorophyll deficiency in Wogon-Sugi, has not been identified. In this study, we identified this gene by genomic sequencing of chloroplast DNA and genetic analysis. Chloroplast DNA sequencing of 16 wild-type and 16 Wogon-Sugi plants showed a 19-bp insertional sequence in the matK coding region in the Wogon-Sugi. This insertion disrupted the matK reading frame. Although an indel mutation in the ycf1 and ycf2 coding region was detected in Wogon-Sugi, sequence variations similar to that of Wogon-Sugi were also detected in several wild-type lines, and they maintained the reading frame. Genetic analysis of the 19 bp insertional mutation in the matK coding region showed that it was found only in the chlorophyll-deficient sector of 125 full-sibling seedlings. Therefore, the 19-bp insertion in the matK coding region is the most likely candidate at present for a mutation underlying the Wogon-Sugi phenotype.


Assuntos
Clorofila/metabolismo , Cryptomeria/genética , Endorribonucleases/genética , Mutação da Fase de Leitura , Nucleotidiltransferases/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , Clorofila/deficiência , Cryptomeria/enzimologia , Cryptomeria/metabolismo , DNA de Cloroplastos/química , DNA de Cloroplastos/genética , Endorribonucleases/metabolismo , Variação Genética , Mutação INDEL , Dados de Sequência Molecular , Nucleotidiltransferases/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA
10.
BMC Plant Biol ; 8: 70, 2008 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-18570682

RESUMO

BACKGROUND: The recent determination of complete chloroplast (cp) genomic sequences of various plant species has enabled numerous comparative analyses as well as advances in plant and genome evolutionary studies. In angiosperms, the complete cp genome sequences of about 70 species have been determined, whereas those of only three gymnosperm species, Cycas taitungensis, Pinus thunbergii, and Pinus koraiensis have been established. The lack of information regarding the gene content and genomic structure of gymnosperm cp genomes may severely hamper further progress of plant and cp genome evolutionary studies. To address this need, we report here the complete nucleotide sequence of the cp genome of Cryptomeria japonica, the first in the Cupressaceae sensu lato of gymnosperms, and provide a comparative analysis of their gene content and genomic structure that illustrates the unique genomic features of gymnosperms. RESULTS: The C. japonica cp genome is 131,810 bp in length, with 112 single copy genes and two duplicated (trnI-CAU, trnQ-UUG) genes that give a total of 116 genes. Compared to other land plant cp genomes, the C. japonica cp has lost one of the relevant large inverted repeats (IRs) found in angiosperms, fern, liverwort, and gymnosperms, such as Cycas and Gingko, and additionally has completely lost its trnR-CCG, partially lost its trnT-GGU, and shows diversification of accD. The genomic structure of the C. japonica cp genome also differs significantly from those of other plant species. For example, we estimate that a minimum of 15 inversions would be required to transform the gene organization of the Pinus thunbergii cp genome into that of C. japonica. In the C. japonica cp genome, direct repeat and inverted repeat sequences are observed at the inversion and translocation endpoints, and these sequences may be associated with the genomic rearrangements. CONCLUSION: The observed differences in genomic structure between C. japonica and other land plants, including pines, strongly support the theory that the large IRs stabilize the cp genome. Furthermore, the deleted large IR and the numerous genomic rearrangements that have occurred in the C. japonica cp genome provide new insights into both the evolutionary lineage of coniferous species in gymnosperm and the evolution of the cp genome.


Assuntos
Cryptomeria/genética , DNA de Cloroplastos/genética , Genômica/métodos , Proteínas de Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , Cycadopsida/genética , DNA de Cloroplastos/química , Ordem dos Genes , Genes de Plantas , Variação Genética , Modelos Genéticos , Dados de Sequência Molecular , Sequências Repetitivas de Ácido Nucleico/genética , Proteínas Ribossômicas/genética , Alinhamento de Sequência , Análise de Sequência de DNA
11.
Front Plant Sci ; 9: 1322, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254658

RESUMO

A genome-wide association study (GWAS) was conducted on more than 30,000 single nucleotide polymorphisms (SNPs) in unrelated first-generation plus tree genotypes from three populations of Japanese cedar Cryptomeria japonica D. Don with genomic prediction for traits of growth, wood properties and male fecundity. Among the assessed populations, genetic characteristics including the extent of linkage disequilibrium (LD) and genetic structure differed and these differences are considered to be due to differences in genetic background. Through population-independent GWAS, several significant SNPs found close to the regions associated with each of these traits and shared in common across the populations were identified. The accuracies of genomic predictions were dependent on the traits and populations and reflected the genetic architecture of traits and genetic characteristics. Prediction accuracies using SNPs selected based on GWAS results were similar to those using all SNPs for several combinations of traits and populations. We discussed the application of genome-wide studies for C. japonica improvement.

12.
Mol Ecol Resour ; 9(3): 850-2, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-21564766

RESUMO

Microsatellite markers were isolated from Robinia pseudoacacia L. using an enrichment method. Eleven of the 23 primer pairs designed successfully amplified unambiguous and polymorphic single loci among 39 individual R. pseudoacacia L. from northeastern Japan. The observed and expected heterozygosities of the 11 microsatellite markers ranged from 0.333 to 0.821 and from 0.489 to 0.867, respectively. The polymorphisms observed at the 11 microsatellite loci are useful genetic data for forest ecological studies involving R. pseudoacacia L.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa