Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Labelled Comp Radiopharm ; 67(2): 67-75, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38116667

RESUMO

Primary aldosteronism (PA) is the leading secondary cause of hypertension. Determining whether one (unilateral) or both (bilateral) adrenal glands are the source of PA in a patient remains challenging, and yet it is a critical step in the decision whether to recommend potentially curative surgery (adrenalectomy) or lifelong medical therapy (typically requiring multiple drugs). Recently, we have developed a fluorine-18 radiopharmaceutical [18 F]CETO to permit greater access to PA molecular imaging. Herein, we report an automated synthesis of this radiotracer. To manufacture the radiopharmaceutical routinely for clinical PET studies, we implemented an automated radiosynthesis method on a Synthra RNplus© synthesiser for which Cl-tosyletomidate was used as the precursor for radiolabelling via nucleophilic [18 F]fluorination. [18 F]CETO was produced with 35 ± 1% (n = 7), decay corrected and 25 ± 4% (n = 7) non-decay corrected radiochemical yield with molar activities ranging from 150 to 400 GBq/µmol. The GMP compliant manufacturing process produces a sterile formulated [18 F]CETO injectable solution for human use as demonstrated by the results of quality control. Automation of the radiosynthesis of [18 F]CETO should facilitate uptake by other adrenal centres and increase access to molecular imaging in PA.


Assuntos
Radioisótopos de Flúor , Compostos Radiofarmacêuticos , Humanos , Radioisótopos de Flúor/química , Imagem Molecular , Glândulas Suprarrenais , Radioquímica/métodos , Tomografia por Emissão de Pósitrons/métodos
2.
Eur J Nucl Med Mol Imaging ; 49(1): 125-136, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34405276

RESUMO

PURPOSE: Positron emission tomography (PET) studies with radioligands for 18-kDa translocator protein (TSPO) have been instrumental in increasing our understanding of the complex role neuroinflammation plays in disorders affecting the brain. However, (R)-[11C]PK11195, the first and most widely used TSPO radioligand has limitations, while the next-generation TSPO radioligands have suffered from high interindividual variability in binding due to a genetic polymorphism in the TSPO gene (rs6971). Herein, we present the biological evaluation of the two enantiomers of [18F]GE387, which we have previously shown to have low sensitivity to this polymorphism. METHODS: Dynamic PET scans were conducted in male Wistar rats and female rhesus macaques to investigate the in vivo behaviour of (S)-[18F]GE387 and (R)-[18F]GE387. The specific binding of (S)-[18F]GE387 to TSPO was investigated by pre-treatment with (R)-PK11195. (S)-[18F]GE387 was further evaluated in a rat model of lipopolysaccharide (LPS)-induced neuroinflammation. Sensitivity to polymorphism of (S)-GE387 was evaluated in genotyped human brain tissue. RESULTS: (S)-[18F]GE387 and (R)-[18F]GE387 entered the brain in both rats and rhesus macaques. (R)-PK11195 blocked the uptake of (S)-[18F]GE387 in healthy olfactory bulb and peripheral tissues constitutively expressing TSPO. A 2.7-fold higher uptake of (S)-[18F]GE387 was found in the inflamed striatum of LPS-treated rodents. In genotyped human brain tissue, (S)-GE387 was shown to bind similarly in low affinity binders (LABs) and high affinity binders (HABs) with a LAB to HAB ratio of 1.8. CONCLUSION: We established that (S)-[18F]GE387 has favourable kinetics in healthy rats and non-human primates and that it can distinguish inflamed from normal brain regions in the LPS model of neuroinflammation. Crucially, we have reconfirmed its low sensitivity to the TSPO polymorphism on genotyped human brain tissue. Based on these factors, we conclude that (S)-[18F]GE387 warrants further evaluation with studies on human subjects to assess its suitability as a TSPO PET radioligand for assessing neuroinflammation.


Assuntos
Compostos Radiofarmacêuticos , Receptores de GABA , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Proteínas de Transporte , Feminino , Humanos , Macaca mulatta/genética , Masculino , Polimorfismo Genético , Tomografia por Emissão de Pósitrons , Ratos , Ratos Wistar , Receptores de GABA/genética , Receptores de GABA/metabolismo , Receptores de GABA-A
3.
ChemMedChem ; 14(9): 982-993, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30900397

RESUMO

Translocator protein (TSPO) is a biomarker of neuroinflammation, which is a hallmark of many neurodegenerative diseases and has been exploited as a positron emission tomography (PET) target. Carbon-11-labelled PK11195 remains the most applied agent for imaging TSPO, despite its short-lived isotope and low brain permeability. Second-generation radiotracers show variance in affinity amongst subjects (low-, mixed-, and high-affinity binders) caused by the genetic polymorphism (rs6971) of the TSPO gene. To overcome these limitations, a new structural scaffold was explored based on the TSPO pharmacophore, and the analogue with a low-affinity binder/high-affinity binder (LAB/HAB) ratio similar (1.2 vs. 1.3) to that of (R)-[11 C]PK11195 was investigated. The synthesis of the reference compound was accomplished in six steps and 9 % overall yield, and the precursor was prepared in eight steps and 8 % overall yield. The chiral separation of the reference and precursor compounds was performed using supercritical fluid chromatography with >95 % ee. The absolute configuration was determined by circular dichroism. Optimisation of reaction conditions for manual radiolabelling revealed acetonitrile as a preferred solvent at 100 °C. Automation of this radiolabelling method provided R and S enantiomers in respective 21.3±16.7 and 25.6±7.1 % decay-corrected yields and molar activities of 55.8±35.6 and 63.5±39.5 GBq µmol-1 (n=3). Injection of the racemic analogue into a healthy rat confirmed passage through the blood-brain barrier.


Assuntos
Radioisótopos de Flúor/química , Polimorfismo Genético , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/síntese química , Receptores de GABA/química , Animais , Humanos , Estudo de Prova de Conceito , Ligação Proteica , Ratos , Receptores de GABA/metabolismo , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa