Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L705-L714, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33533300

RESUMO

The mechanisms responsible for driving endogenous airway hyperresponsiveness (AHR) in the form of exercise-induced bronchoconstriction (EIB) are not fully understood. We examined alterations in airway phospholipid hydrolysis, surfactant degradation, and lipid mediator release in relation to AHR severity and changes induced by exercise challenge. Paired induced sputum (n = 18) and bronchoalveolar lavage (BAL) fluid (n = 11) were obtained before and after exercise challenge in asthmatic subjects. Samples were analyzed for phospholipid structure, surfactant function, and levels of eicosanoids and secreted phospholipase A2 group 10 (sPLA2-X). A primary epithelial cell culture model was used to model effects of osmotic stress on sPLA2-X. Exercise challenge resulted in increased surfactant degradation, phospholipase activity, and eicosanoid production in sputum samples of all patients. Subjects with EIB had higher levels of surfactant degradation and phospholipase activity in BAL fluid. Higher basal sputum levels of cysteinyl leukotrienes (CysLTs) and prostaglandin D2 (PGD2) were associated with direct AHR, and both the postexercise and absolute change in CysLTs and PGD2 levels were associated with EIB severity. Surfactant function either was abnormal at baseline or became abnormal after exercise challenge. Baseline levels of sPLA2-X in sputum and the absolute change in amount of sPLA2-X with exercise were positively correlated with EIB severity. Osmotic stress ex vivo resulted in movement of water and release of sPLA2-X to the apical surface. In summary, exercise challenge promotes changes in phospholipid structure and eicosanoid release in asthma, providing two mechanisms that promote bronchoconstriction, particularly in individuals with EIB who have higher basal levels of phospholipid turnover.


Assuntos
Asma/complicações , Eicosanoides/metabolismo , Exercício Físico , Fosfolipases A2 do Grupo X/metabolismo , Fosfolipídeos/metabolismo , Hipersensibilidade Respiratória/etiologia , Tensoativos/metabolismo , Adolescente , Adulto , Broncoconstrição , Feminino , Humanos , Hidrólise , Masculino , Pressão Osmótica , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/patologia , Escarro , Adulto Jovem
2.
Artigo em Inglês | MEDLINE | ID: mdl-29038277

RESUMO

Ventilator-associated bacterial pneumonia (VABP) is a difficult therapeutic problem. Considerable controversy exists regarding the optimal chemotherapy for this entity. The recent guidelines of the Infectious Diseases Society of America and the American Thoracic Society recommend a 7-day therapeutic course for VABP based on the balance of no negative impact on all-cause mortality, less resistance emergence, and fewer antibiotic treatment days, counterbalanced with a higher relapse rate for patients whose pathogen is a nonfermenter. The bacterial burden causing an infection has a substantial impact on treatment outcome and resistance selection. We describe the baseline bronchoalveolar lavage (BAL) fluid burden of organisms in suspected VABP patients screened for inclusion in a clinical trial. We measured the urea concentrations in plasma and BAL fluid to provide an index of the dilution of the bacterial and drug concentrations in the lung epithelial lining fluid introduced by the BAL procedure. We were then able to calculate the true bacterial burden as the diluted colony count times the dilution factor. The median dilution factor was 28.7, with the interquartile range (IQR) being 11.9 to 53.2. Median dilution factor-corrected colony counts were 6.18 log10(CFU/ml) [IQR, 5.43 to 6.46 log10(CFU/ml)]. In a subset of patients, repeat BAL on day 5 showed a good stability of the dilution factor. We previously showed that large bacterial burdens reduce or stop bacterial killing by granulocytes. (This study has been registered at ClinicalTrials.gov under registration no. NCT01570192.).


Assuntos
Técnicas Bacteriológicas/métodos , Líquido da Lavagem Broncoalveolar/microbiologia , Pneumonia Bacteriana/microbiologia , Pneumonia Associada à Ventilação Mecânica/microbiologia , Ureia/análise , Carga Bacteriana , Humanos , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Associada à Ventilação Mecânica/tratamento farmacológico , Ureia/sangue
5.
Nutrients ; 14(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297099

RESUMO

(1) Background: The disease-modifying mechanisms of high-dose intravenous vitamin C (HDIVC) in sepsis induced acute respiratory distress syndrome (ARDS) is unclear. (2) Methods: We performed a post hoc study of plasma biomarkers from subjects enrolled in the randomized placebo-controlled trial CITRIS-ALI. We explored the effects of HDIVC on cell-free DNA (cfDNA) and syndecan-1, surrogates for neutrophil extracellular trap (NET) formation and degradation of the endothelial glycocalyx, respectively. (3) Results: In 167 study subjects, baseline cfDNA levels in HDIVC (84 subjects) and placebo (83 subjects) were 2.18 ng/µL (SD 4.20 ng/µL) and 2.65 ng/µL (SD 3.87 ng/µL), respectively, p = 0.45. At 48-h, the cfDNA reduction was 1.02 ng/µL greater in HDIVC than placebo, p = 0.05. Mean baseline syndecan-1 levels in HDIVC and placebo were 9.49 ng/mL (SD 5.57 ng/mL) and 10.83 ng/mL (SD 5.95 ng/mL), respectively, p = 0.14. At 48 h, placebo subjects exhibited a 1.53 ng/mL (95% CI, 0.96 to 2.11) increase in syndecan-1 vs. 0.75 ng/mL (95% CI, 0.21 to 1.29, p = 0.05), in HDIVC subjects. (4) Conclusions: HDIVC infusion attenuated cell-free DNA and syndecan-1, biomarkers associated with sepsis-induced ARDS. Improvement of these biomarkers suggests amelioration of NETosis and shedding of the vascular endothelial glycocalyx, respectively.


Assuntos
Ácidos Nucleicos Livres , Armadilhas Extracelulares , Síndrome do Desconforto Respiratório , Sepse , Humanos , Glicocálix , Sindecana-1/metabolismo , Sindecana-1/farmacologia , Ácido Ascórbico/uso terapêutico , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/etiologia , Vitaminas/uso terapêutico , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa