RESUMO
Microbial fuel cells (MFCs) show promise in sewage treatment because they can directly convert organic matter (OM) into electricity. This study aimed to demonstrate MFCs stability over 750 days of operation and efficient removal of OM and nitrogenous compounds from sewage. To enhance contaminant removal, oxygen was provided into the anode chamber via a mini air pump. This pump was powered by the MFCs' output voltage, which was boosted using a DC-DC converter. The experimental system consisted of 12 sets of cylindrical MFCs within a 246L-scale reactor. The boosted voltage reached 4.7 V. This voltage was first collected in capacitors every 5 min and then dispensed intermittently to the air pump for the MFCs reactor in 4 s. This corresponds to receiving average DO concentration reaching 0.34 ± 0.44 mg/L at 10 cm above the air-stone. Consequently, the degradation rate constants (k) for chemical oxygen demand (COD) and biological oxygen demand (BOD) in the presence of oxygen were 0.048 and 0.069, respectively, which surpassed those without oxygen by 0.039 and 0.044, respectively. Aeration also marginally improved the removal of ammonia because of its potential to create a favorable environment for the growth of anammox and ammonia-oxidizing bacteria such as Candidatus brocadia and Nitrospira. The findings of this study offer in-depth insight into the benefits of boosted voltage in MFCs, highlighting its potential to enhance contaminant degradation. This serves as a foundation for future research focused on improving MFCs performance, particularly for the removal of contaminants from wastewater.
Assuntos
Fontes de Energia Bioelétrica , Esgotos , Esgotos/química , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Eletricidade , Poluentes Químicos da Água/análise , Análise da Demanda Biológica de Oxigênio , Oxigênio/análiseRESUMO
Microbial fuel cells (MFCs) are a promising technology that directly converts organic matter (OM) in wastewater into electricity while simultaneously degrading contaminants. However, MFCs are insufficient for the removal of nitrogenous compounds. Therefore, the post-treatment of MFCs is essential. This study was the first to use natural zeolite adsorption integrated with photosynthesis (ZP) for post-treating MFCs. In this system, no external energy was required; instead, natural light was used to promote the growth of photosynthetic microorganisms, thereby enhancing contaminants removal through the photosynthesis process. To assess the effectiveness of the method, comparisons were conducted under two conditions: dark (no photosynthesis) and light (with photosynthesis). In darkness, extending hydraulic retention time (HRT) enhanced COD and BOD removal by 19.8% and 28.9%, respectively. When exposed to natural light, improvements were even more notable, with COD and BOD removal reaching 32% and 40%, respectively. In both conditions, the method effectively removed NH4 +, achieving 60% efficiency in darkness and 84.5% in light. This study showed that the adsorption capacity of the zeolite reached saturation when the cumulative liquid volume per unit weight of the zeolite exceeded 0.2 L g-1. The key functional photosynthetic microbes were investigated using 16S rRNA and 18S rRNA. This revealed the presence of microorganisms such as Chlorobium, Acidovorax, Novosphingobium, and Scenedesmus, which likely play a role in enhancing the efficiency of photosynthesis in removing contaminants. The study findings indicated that the integration of MFCs-ZP represents an eco-friendly approach capable of resource recovery from wastewater while also meeting discharge standards.
RESUMO
Flocculation is a key process for controlling the fate and transport of suspended particulate matter (SPM) in water environments and has received considerable attention in the field of water science (e.g., oceanography, limnology, and hydrology), remaining an active area of research. The research on flocculation has been conducted to elucidate the SPM dynamics and to diagnose various environmental issues. The flocculation, sedimentation, and transportation of SPM are closely linked to the compositional and structural properties of flocs. In fact, flocs are highly heterogeneous in terms of composition. However, the lack of comprehensive research on floc composition and structure has led to misconceptions regarding the temporal and spatial dynamics of SPM. This review summarizes the current understanding of the heterogeneous composition of flocs (e.g., minerals, organic matter, metals, microplastic, engineered nanoparticles) and its effect on their structure and on their fate and transport within aquatic environments. Furthermore, the effects of human activities (e.g., pollutant discharge, construction) on floc composition are discussed.
RESUMO
Interplays between microalgae and clay minerals enhance biologically mediated flocculation, thereby affecting the sedimentation and transportation of suspended particulate matter (SPM) in water and benthic environments. This interaction forms larger flocs with a higher settling velocity and enhances SPM sinking. The aim of this study was to investigate the flocculation kinetics of microalgae and clay in suspension and to elucidate the mechanisms associated with such interactions. Standard jar test experiments were conducted using various mixtures of kaolinite and microalgal samples from batch cultures (Chlorella vulgaris) to estimate biologically mediated flocculation kinetics. The organic matter (OM) composition secreted by the microalgae was characterized using a liquid chromatography - organic carbon detection system, and quantitative analysis of transparent exopolymer particles was conducted separately. A two-class flocculation kinetic model, based on the interaction between flocculi and flocs, was also adopted to quantitatively analyze the experimental data from flocculation. Results from the flocculation kinetic tests and OM analyses, in association with other data analyses (i.e., floc size distribution and flocculation kinetic model), showed that flocculation increased with OM concentration during the growth phase (10-20 d). However, on day 23 during the early stationary phase, flocculation kinetics started decreasing and substantially declined on day 30, even though the amount of OM (mainly biopolymers) continued to increase. Our results indicate that an adequate quantity of biopolymers produced by the microalgal cells in the growth phase enhanced floc-to-floc attachment and hence flocculation kinetics. In contrast, an excessive quantity of biopolymers and humic substances in the stationary phase enhanced the formation of polymeric backbone structures and flocculation via scavenging particles but simultaneously increased steric stabilization with the production of a large number of fragmented particles.