Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 44(5): 1177-89, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27178469

RESUMO

Self-DNA is present in the cytosol of many cancer cells and can promote effective immune rejection of tumor cells, but the mechanisms leading to the presence of cytosolic DNA are unknown. Here, we report that the cleavage of genomic DNA by DNA structure-specific endonuclease MUS81 and PARP-dependent DNA repair pathways leads to the accumulation of cytosolic DNA in prostate cancer cells. The number of nuclear MUS81 foci and the amount of cytosolic dsDNA increased in tandem from hyperplasia to clinical stage II prostate cancers and decreased at stage III. Cytosolic DNA generated by MUS81 stimulated DNA sensor STING-dependent type I interferon (IFN) expression and promoted phagocytic and T cell responses, resulting in type I and II IFN-mediated rejection of prostate tumor cells via mechanisms that partly depended on macrophages. Our results demonstrate that the tumor suppressor MUS81 alerts the immune system to the presence of transformed host cells.


Assuntos
Autoantígenos/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Endonucleases/metabolismo , Neoplasias da Próstata/imunologia , Linfócitos T/imunologia , Animais , Autoantígenos/imunologia , Linhagem Celular Tumoral , DNA/imunologia , Humanos , Interferon Tipo I/metabolismo , Ativação Linfocitária , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estadiamento de Neoplasias , Neoplasias Experimentais , Fagocitose , Neoplasias da Próstata/patologia
2.
Cytokine ; 76(2): 581-582, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26070935

RESUMO

We recently provided evidence that genome-derived DNA is present in the cytosol of many tumor cells. Genomic loci that give rise to cytosolic DNA can potentially form non-B DNA structures including triple-stranded RNA:DNA structures (R-loops). The RNA:DNA-specific endonuclease RNaseh1 reduced the levels of cytosolic DNA and type I interferon-dependent rejection of B-cell lymphoma suggesting that cytosolic DNA may contribute to immune surveillance of B-cell lymphoma.


Assuntos
DNA/genética , Genoma , Interferon Tipo I/genética , Linfoma de Células B/genética , Linfoma de Células B/imunologia , Linhagem Celular Tumoral , Humanos , RNA/genética
3.
J Immunol ; 189(4): 1826-34, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22798674

RESUMO

NK cells play a crucial role in innate immunity against tumors. In many human tumors, Ras is chronically active, and tumor cells frequently express ligands for the activating NK cell receptor NKG2D. In this study, we report that Ras activation upregulates the expression of Raet1 protein family members Rae1α and Rae1ß in mouse and ULBP1-3 in human cells. In addition, Ras also induced MHC class I chain-related protein expression in some human cell lines. Overexpression of the constitutively active H-RasV12 mutant was sufficient to induce NKG2D ligand expression. H-RasV12-induced NKG2D ligand upregulation depended on Raf, MAPK/MEK, and PI3K, but not ATM or ATR, two PI3K-like kinases previously shown to induce NKG2D ligand expression. Analysis of the 5' untranslated regions of Raet1 family members suggested the presence of features known to impair translation initiation. Overexpression of the rate-limiting translation initiation factor eIF4E induced Rae1 and ULBP1 expression in a Ras- and PI3K-dependent manner. Upregulation of NKG2D ligands by H-RasV12 increased sensitivity of cells to NK cell-mediated cytotoxicity. In summary, our data suggest that chronic Ras activation is linked to innate immune responses, which may contribute to immune surveillance of H-Ras transformed cells.


Assuntos
Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Neoplasias/imunologia , Proteínas Proto-Oncogênicas p21(ras)/imunologia , Transdução de Sinais/imunologia , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica/imunologia , Ativação Enzimática , Humanos , Vigilância Imunológica/imunologia , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Transfecção
4.
Cell Rep ; 11(3): 460-73, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25865892

RESUMO

The DNA damage response (DDR) induces the expression of type I interferons (IFNs), but the underlying mechanisms are poorly understood. Here, we show the presence of cytosolic DNA in different mouse and human tumor cells. Treatment of cells with genotoxic agents increased the levels of cytosolic DNA in a DDR-dependent manner. Cloning of cytosolic DNA molecules from mouse lymphoma cells suggests that cytosolic DNA is derived from unique genomic loci and has the potential to form non-B DNA structures, including R-loops. Overexpression of Rnaseh1, which resolves R-loops, reduced the levels of cytosolic DNA, type I Ifn transcripts, and type I IFN-dependent rejection of lymphoma cells. Live-cell imaging showed a dynamic contact of cytosolic DNA with mitochondria, an important organelle for innate immune recognition of cytosolic nucleotides. In summary, we found that cytosolic DNA is present in many tumor cells and contributes to the immunogenicity of tumor cells.


Assuntos
DNA/imunologia , Interferon Tipo I/imunologia , Linfoma de Células B/imunologia , Linfoma de Células B/patologia , Transferência Adotiva , Animais , Linhagem Celular , Citosol/imunologia , Citosol/metabolismo , Dano ao DNA/imunologia , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Reação em Cadeia da Polimerase em Tempo Real
5.
Oncoimmunology ; 2(1): e22244, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23482418

RESUMO

RAS is constitutively active in multiple types of tumor cells. We have recently demonstrated that H-RASV12 enhances the translation of ligands for the activating immune receptor NKG2D, hence rendering cells more susceptible to natural killer (NK) cell-mediated lysis. This effect depends on MAPK and PI3K signaling, but not on the DNA damage response.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa