Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(12): 3512-3526, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37667903

RESUMO

The Duluth Complex (DC) contains sulfide-rich magmatic intrusions that represent one of the largest known economic deposits of copper, nickel, and platinum group elements. Previous work showed that microbial communities associated with experimentally-weathered DC waste rock and tailings were dominated by uncultivated taxa and organisms not typically associated with mine waste. However, those experiments were designed for kinetic testing and do not necessarily represent the conditions expected for long-term environmental weathering. We used 16S rRNA gene methods to characterize the microbial communities present on the surfaces of naturally-weathered and historically disturbed outcrops of DC material. Rock surfaces were dominated by diverse uncultured Ktedonobacteria, Acetobacteria, and Actinobacteria, with abundant algae and other phototrophs. These communities were distinct from microbial assemblages from experimentally-weathered DC rocks, suggesting different energy and nutrient resources in environmental samples. Sulfide mineral incubations performed with and without algae showed that photosynthetic microorganisms could have an inhibitory effect on autotrophic populations, resulting in slightly lower sulfate release and differences in dominant microorganisms. The microbial assemblages from these weathered outcrops show how communities develop during weathering of sulfide-rich DC rocks and represent baseline data that could evaluate the effectiveness of future reclamation of waste produced by large-scale mining operations.


Assuntos
Microbiota , Gerenciamento de Resíduos , RNA Ribossômico 16S/genética , Minerais , Microbiota/genética , Sulfetos
2.
Microb Biotechnol ; 13(6): 1877-1888, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32720477

RESUMO

Microbial precipitation of calcium carbonate is a widespread environmental phenomenon that has diverse engineering applications, from building and soil restoration to carbon sequestration. Urease-mediated ureolysis and CO2 (de)hydration by carbonic anhydrase (CA) are known for their potential to precipitate carbonate minerals, yet many environmental microbial community studies rely on marker gene or metagenomic approaches that are unable to determine in situ activity. Here, we developed fast and cost-effective tests for the field detection of urease and CA activity using pH-sensitive strips inside microcentrifuge tubes that change colour in response to the reaction products of urease (NH3 ) and CA (CO2 ). The urease assay proved sensitive and useful in the field to detect in situ activity in biofilms from a saline lake, a series of calcareous fens, and ferrous springs, finding relatively high urease activity in lake samples. Incubations of lake microbes with urea resulted in significantly higher CaCO3 precipitation compared to incubations with a urease inhibitor, showing that the rapid assay indicated an on-site active metabolism potentially mediating carbonate precipitation. The CA assay, however, showed less sensitivity compared to the urease test. While its sensitivity limits its utility, the assay may still be useful as a preliminary indicator given the paucity of other means for detecting CA activity in the field. Field urease, and potentially CA, activity assays complement molecular approaches and facilitate the search for carbonate-precipitating microbes and their in situ activity, which could be applied toward agriculture, engineering and carbon sequestration technologies.


Assuntos
Anidrases Carbônicas , Urease , Biofilmes , Carbonato de Cálcio , Ureia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa