Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36364108

RESUMO

There is a previously neglected influence of geochemical conditions on plant phytochemistry. In particular, high concentrations of dissolved salts can affect their biosynthesis of natural products. Detoxification is most likely an important aspect for the plant, but additional natural products can also give it an expanded range of bioactivities. During the phytochemical analysis a Palicourea luxurians plant collected in a sulfate-rich environment (near the Río Sucio, Costa Rica) showed an interesting natural product in this regard. The structure of this compound was determined using spectroscopic and computational methods (NMR, MS, UV, IR, CD, optical rotation, quantum chemical calculations) and resulted in a megastigmane sulfate ester possessing a ß-ionone core structure, namely blumenol C sulfate (1, C13H22O5S). The levels of sulfur and sulfate ions in the leaves of the plant were determined using elemental analysis and compared to the corresponding levels in comparable plant leaves from a less sulfate-rich environments. The analyses show the leaves from which we isolated blumenol C sulfate (1) to contain 35% more sulfur and 80% more sulfate than the other samples. Antimicrobial and antioxidant activities of compound 1 were tested against Escherichia coli, E. coli ampR and Bacillus subtilis as well as measured using complementary in vitro FRAP and ATBS assays, respectively. These bioactivities are comparable to those determined for structurally related megastigmanes. The sulfur and sulfate content of the plant leaves from the sulfate-rich environment was significantly higher than that of the other plants. Against this background of salt stress, we discuss a possible biosynthesis of blumenol C sulfate (1). Furthermore, there appears to be no benefit for the plant in terms of extended bioactivities. Hence, the formation of blumenol C sulfate (1) probably primarily serves the plant detoxification process.


Assuntos
Produtos Biológicos , Rubiaceae , Rubiaceae/química , Norisoprenoides/análise , Sulfatos/análise , Escherichia coli , Folhas de Planta/química , Produtos Biológicos/análise , Enxofre/análise
2.
Sci Rep ; 9(1): 6856, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048736

RESUMO

Animal behaviour often is characterised by standardised assays. In social insects such as ants, behaviour assays are for example used to characterise aggressive and peaceful behaviour. Such assays differ in the number of individuals, the duration and place of assays, and the scoring scales. Also the behaviour indices used to summarise the results differ. Here, we compared five behaviour indices (Aggression Index, Mean Maximum Aggression Index; and the newly introduced Mean Maximum Peace Index, Mean Behaviour Index aggressive, and Mean Behaviour Index peaceful) using a scoring scale that comprises peaceful and aggressive behaviour. The indices were applied on eight simulations and three observed data sets. The five indices were correlated but frequently differed in their means. Multiple indices were needed to capture the complete behaviour range. Furthermore, subtle differences in workers' behaviour, that is, differences that go beyond the presence/absence of aggression, were only identified when considering multiple indices. We infer that the indices applied are differently suited for different analyses. Fine-scale analyses of behavioural variation profit from using more than one index. The particular choice of index or indices likely influences the interpretation of behaviour and should be carefully done in the light of study species and research question.


Assuntos
Comportamento Animal/fisiologia , Agressão/fisiologia , Animais , Formigas , Comportamento Social
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa