Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(1): 741-751, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871212

RESUMO

Seeds preserve a far developed plant embryo in a quiescent state. Seed metabolism relies on stored resources and is reactivated to drive germination when the external conditions are favorable. Since the switchover from quiescence to reactivation provides a remarkable case of a cell physiological transition we investigated the earliest events in energy and redox metabolism of Arabidopsis seeds at imbibition. By developing fluorescent protein biosensing in intact seeds, we observed ATP accumulation and oxygen uptake within minutes, indicating rapid activation of mitochondrial respiration, which coincided with a sharp transition from an oxidizing to a more reducing thiol redox environment in the mitochondrial matrix. To identify individual operational protein thiol switches, we captured the fast release of metabolic quiescence in organello and devised quantitative iodoacetyl tandem mass tag (iodoTMT)-based thiol redox proteomics. The redox state across all Cys peptides was shifted toward reduction from 27.1% down to 13.0% oxidized thiol. A large number of Cys peptides (412) were redox switched, representing central pathways of mitochondrial energy metabolism, including the respiratory chain and each enzymatic step of the tricarboxylic acid (TCA) cycle. Active site Cys peptides of glutathione reductase 2, NADPH-thioredoxin reductase a/b, and thioredoxin-o1 showed the strongest responses. Germination of seeds lacking those redox proteins was associated with markedly enhanced respiration and deregulated TCA cycle dynamics suggesting decreased resource efficiency of energy metabolism. Germination in aged seeds was strongly impaired. We identify a global operation of thiol redox switches that is required for optimal usage of energy stores by the mitochondria to drive efficient germination.


Assuntos
Arabidopsis/fisiologia , Ciclo do Ácido Cítrico/fisiologia , Germinação/fisiologia , Mitocôndrias/metabolismo , Sementes/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glutationa Redutase/genética , Glutationa Redutase/metabolismo , Oxirredução , Oxigênio/metabolismo , Plantas Geneticamente Modificadas , Proteômica/métodos , Sementes/citologia , Sementes/crescimento & desenvolvimento , Tiorredoxina h/genética , Tiorredoxina h/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo
2.
Mol Cell Proteomics ; 17(5): 1035-1046, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29496906

RESUMO

The strictly anaerobic bacterium C. difficile has become one of the most problematic hospital acquired pathogens and a major burden for health care systems. Although antibiotics work effectively in most C. difficile infections (CDIs), their detrimental effect on the intestinal microbiome paves the way for recurrent episodes of CDI. To develop alternative, non-antibiotics-based treatment strategies, deeper knowledge on the physiology of C. difficile, stress adaptation mechanisms and regulation of virulence factors is mandatory. The focus of this work was to tackle the thiol proteome of C. difficile and its stress-induced alterations, because recent research has reported that the amino acid cysteine plays a central role in the metabolism of this pathogen. We have developed a novel cysteine labeling approach to determine the redox state of protein thiols on a global scale. Applicability of this technique was demonstrated by inducing disulfide stress using the chemical diamide. The method can be transferred to any kind of redox challenge and was applied in this work to assess the effect of bile acids on the thiol proteome of C. difficile We present redox-quantification for more than 1,500 thiol peptides and discuss the general difficulty of redox analyses of peptides possessing more than a single cysteine residue. The presented method will be especially useful not only when determining redox status, but also for providing information on protein quantity. Additionally, our comprehensive data set reveals protein cysteine sites particularly susceptible to oxidation and builds a groundwork for redox proteomics studies in C. difficile.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridioides difficile/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Compostos de Sulfidrila/metabolismo , Alquilação , Sequência de Aminoácidos , Cisteína/metabolismo , Dissulfetos/metabolismo , Oxirredução , Peptídeos/química , Peptídeos/metabolismo
3.
Am J Respir Cell Mol Biol ; 58(4): 482-491, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29111771

RESUMO

Exposure of cultured human airway epithelial model cells (16HBE14o-, S9) to Staphylococcus aureus α-toxin (hemolysin A, Hla) induces changes in cell morphology and cell layer integrity that are due to the inability of the cells to maintain stable cell-cell or focal contacts and to properly organize their actin cytoskeletons. The aim of this study was to identify Hla-activated signaling pathways involved in regulating the phosphorylation level of the actin-depolymerizing factor cofilin. We used recombinant wild-type hemolysin A (rHla) and a variant of Hla (rHla-H35L) that is unable to form functional transmembrane pores to treat immortalized human airway epithelial cells (16HBE14o-, S9) as well as freshly isolated human nasal tissue. Our results indicate that rHla-mediated changes in cofilin phosphorylation require the formation of functional Hla pores in the host cell membrane. Formation of functional transmembrane pores induced hypophosphorylation of cofilin at Ser3, which was mediated by rHla-induced attenuation of p21-activated protein kinase and LIM kinase activities. Because dephosphorylation of pSer3-cofilin results in activation of this actin-depolymerizing factor, treatment of cells with rHla resulted in loss of actin stress fibers from the cells and destabilization of cell shape followed by the appearance of paracellular gaps in the cell layers. Activation of protein kinase A or activation of small GTPases (Rho, Rac, Cdc42) do not seem to be involved in this response.


Assuntos
Citoesqueleto de Actina/efeitos dos fármacos , Remodelação das Vias Aéreas/efeitos dos fármacos , Toxinas Bacterianas/farmacologia , Células Epiteliais/efeitos dos fármacos , Proteínas Hemolisinas/farmacologia , Mucosa Respiratória/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patologia , Linhagem Celular , Forma Celular/efeitos dos fármacos , Cofilina 1/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Quinases Lim/metabolismo , Fosforilação , Proteínas Recombinantes/farmacologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Quinases Ativadas por p21/metabolismo
4.
Mol Cell Proteomics ; 15(8): 2671-85, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27259358

RESUMO

Comprehensive characterization of signaling in pancreatic ductal adenocarcinoma (PDAC) promises to enhance our understanding of the molecular aberrations driving this devastating disease, and may identify novel therapeutic targets as well as biomarkers that enable stratification of patients for optimal therapy. Here, we use immunoaffinity-coupled high-resolution mass spectrometry to characterize global tyrosine phosphorylation patterns across two large panels of human PDAC cell lines: the ATCC series (19 cell lines) and TKCC series (17 cell lines). This resulted in the identification and quantification of over 1800 class 1 tyrosine phosphorylation sites and the consistent segregation of both PDAC cell line series into three subtypes with distinct tyrosine phosphorylation profiles. Subtype-selective signaling networks were characterized by identification of subtype-enriched phosphosites together with pathway and network analyses. This revealed that the three subtypes characteristic of the ATCC series were associated with perturbations in signaling networks associated with cell-cell adhesion and epithelial-mesenchyme transition, mRNA metabolism, and receptor tyrosine kinase (RTK) signaling, respectively. Specifically, the third subtype exhibited enhanced tyrosine phosphorylation of multiple RTKs including the EGFR, ERBB3 and MET. Interestingly, a similar RTK-enriched subtype was identified in the TKCC series, and 'classifier' sites for each series identified using Random Forest models were able to predict the subtypes of the alternate series with high accuracy, highlighting the conservation of the three subtypes across the two series. Finally, RTK-enriched cell lines from both series exhibited enhanced sensitivity to the small molecule EGFR inhibitor erlotinib, indicating that their phosphosignature may provide a predictive biomarker for response to this targeted therapy. These studies highlight how resolution of subtype-selective signaling networks can provide a novel taxonomy for particular cancers, and provide insights into PDAC biology that can be exploited for improved patient management.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Fosfotirosina/metabolismo , Proteômica/métodos , Linhagem Celular Tumoral , Sobrevivência Celular , Cromatografia Líquida , Humanos , Espectrometria de Massas , Mapas de Interação de Proteínas , Transdução de Sinais , Espectrometria de Massas em Tandem
5.
J Proteome Res ; 15(12): 4369-4386, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27762562

RESUMO

Internalization of Staphylococcus aureus by nonprofessional phagocytic cells is a major suspected cause of persistent and difficult-to-treat infections, including pneumonia. In this study, we established an infection model with 16HBE14o- human bronchial epithelial cells and demonstrated internalization, escape from phagosomal clearance, and intracellular replication of S. aureus HG001 within the first 4 h postinfection. We used quantitative phosphoproteomics to identify characteristic signaling networks in the host at different infection stages. Although we found only minor changes in protein abundance, the infection was accompanied by highly dynamic alterations in phosphorylation events primarily in proteins that are associated with pathways of cytoskeleton dynamics, cell-cell and cell-matrix contacts, vesicle trafficking, autophagy, and GTPase signaling. Analyses of host protein kinases by kinase-substrate mapping, active regulatory site immunoblotting, and prediction algorithms highlighted known and novel host kinases with putative critical roles in S. aureus infection-accompanied signaling including FAK, PKA, PKC, and CDK. Targeted pharmacological inhibition of these kinases resulted in a significant reduction of intracellular S. aureus cells. The current study constitutes a valuable resource for better understanding the infection-relevant molecular pathomechanisms of airway cells and for developing novel host-centric anti-infective strategies for treating S. aureus infections.


Assuntos
Proteoma/metabolismo , Proteômica/métodos , Proteínas de Bactérias/análise , Brônquios/citologia , Brônquios/microbiologia , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Infecções , Fosforilação , Staphylococcus aureus/química , Staphylococcus aureus/fisiologia
6.
Breast Cancer Res ; 16(5): 437, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25200860

RESUMO

INTRODUCTION: Although aberrant tyrosine kinase signalling characterises particular breast cancer subtypes, a global analysis of tyrosine phosphorylation in mouse models of breast cancer has not been undertaken to date. This may identify conserved oncogenic pathways and potential therapeutic targets. METHODS: We applied an immunoaffinity/mass spectrometry workflow to three mouse models: murine stem cell virus-Neu, expressing truncated Neu, the rat orthologue of human epidermal growth factor receptor 2, Her2 (HER2); mouse mammary tumour virus-polyoma virus middle T antigen (PyMT); and the p53-/- transplant model (p53). Pathways and protein-protein interaction networks were identified by bioinformatics analysis. Molecular mechanisms underpinning differences in tyrosine phosphorylation were characterised by Western blot analysis and array comparative genomic hybridisation. The functional role of mesenchymal-epithelial transition factor (Met) in a subset of p53-null tumours was interrogated using a selective tyrosine kinase inhibitor (TKI), small interfering RNA (siRNA)-mediated knockdown and cell proliferation assays. RESULTS: The three models could be distinguished on the basis of tyrosine phosphorylation signatures and signalling networks. HER2 tumours exhibited a protein-protein interaction network centred on avian erythroblastic leukaemia viral oncogene homologue 2 (Erbb2), epidermal growth factor receptor and platelet-derived growth factor receptor α, and they displayed enhanced tyrosine phosphorylation of ERBB receptor feedback inhibitor 1. In contrast, the PyMT network displayed significant enrichment for components of the phosphatidylinositol 3-kinase signalling pathway, whereas p53 tumours exhibited increased tyrosine phosphorylation of Met and components or regulators of the cytoskeleton and shared signalling network characteristics with basal and claudin-low breast cancer cells. A subset of p53 tumours displayed markedly elevated cellular tyrosine phosphorylation and Met expression, as well as Met gene amplification. Treatment of cultured p53-null cells exhibiting Met amplification with a selective Met TKI abrogated aberrant tyrosine phosphorylation and blocked cell proliferation. The effects on proliferation were recapitulated when Met was knocked down using siRNA. Additional subtypes of p53 tumours exhibited increased tyrosine phosphorylation of other oncogenes, including Peak1/SgK269 and Prex2. CONCLUSION: This study provides network-level insights into signalling in the breast cancer models utilised and demonstrates that comparative phosphoproteomics can identify conserved oncogenic signalling pathways. The Met-amplified, p53-null tumours provide a new preclinical model for a subset of triple-negative breast cancers.


Assuntos
Neoplasias Mamárias Experimentais/metabolismo , Fosfoproteínas/metabolismo , Fosfotirosina/metabolismo , Proteoma/metabolismo , Animais , Feminino , Dosagem de Genes , Humanos , Indóis/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transplante de Neoplasias , Oncogenes , Mapas de Interação de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Sulfonas/farmacologia
7.
J Proteome Res ; 12(7): 3104-16, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23692254

RESUMO

Kinase enrichment utilizing broad-spectrum kinase inhibitors enables the identification of large proportions of the expressed kinome by mass spectrometry. However, the existing inhibitors are still inadequate in covering the entire kinome. Here, we identified a novel bisanilino pyrimidine, CTx-0294885, exhibiting inhibitory activity against a broad range of kinases in vitro, and further developed it into a Sepharose-supported kinase capture reagent. Use of a quantitative proteomics approach confirmed the selectivity of CTx-0294885-bound beads for kinase enrichment. Large-scale CTx-0294885-based affinity purification followed by LC-MS/MS led to the identification of 235 protein kinases from MDA-MB-231 cells, including all members of the AKT family that had not been previously detected by other broad-spectrum kinase inhibitors. Addition of CTx-0294885 to a mixture of three kinase inhibitors commonly used for kinase-enrichment increased the number of kinase identifications to 261, representing the largest kinome coverage from a single cell line reported to date. Coupling phosphopeptide enrichment with affinity purification using the four inhibitors enabled the identification of 799 high-confidence phosphosites on 183 kinases, ∼10% of which were localized to the activation loop, and included previously unreported phosphosites on BMP2K, MELK, HIPK2, and PRKDC. Therefore, CTx-0294885 represents a powerful new reagent for analysis of kinome signaling networks that may facilitate development of targeted therapeutic strategies. Proteomics data have been deposited to the ProteomeXchange Consortium ( http://proteomecentral.proteomexchange.org ) via the PRIDE partner repository with the data set identifier PXD000239.


Assuntos
Fosfotransferases/isolamento & purificação , Inibidores de Proteínas Quinases/farmacologia , Proteômica , Pirimidinas/química , ortoaminobenzoatos/química , Linhagem Celular , Cromatografia Líquida/métodos , Humanos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Espectrometria de Massas em Tandem/métodos
8.
Int J Med Microbiol ; 303(3): 114-23, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23517692

RESUMO

Bacillithiol (Cys-GlcN-malate, BSH) serves as a major low molecular weight thiol in low GC Gram-positive bacteria including Bacillus species and a variety of Staphylococcus aureus strains. These bacteria do not produce glutathione (GSH). In this study, HPLC analyses were used to determine BSH levels in different S. aureus strains. Furthermore, the role of BSH in the resistance against oxidants and antibiotics and its function in virulence was investigated. We and others (Newton, G.L., Fahey, R.C., Rawat, M., 2012. Microbiology 158, 1117-1126) found that BSH is not produced by members of the S. aureus NCTC8325 lineage, such as strains 8325-4 and SH1000. Using bioinformatics we show that the BSH-biosynthetic gene bshC is disrupted by an 8-bp duplication in S. aureus NCTC8325. The functional bshC-gene from BSH-producing S. aureus Newman (NWMN_1087) was expressed in S. aureus 8325-4 to reconstitute BSH-synthesis. Comparison of the BSH-producing and BSH-minus strains revealed higher resistance of the BSH-producing strain against the antibiotic fosfomycin and the oxidant hypochlorite but not against hydrogen peroxide or diamide. In addition, a higher bacterial load of the BSH-producing strain was detected in human upper-airway epithelial cells and murine macrophages. This indicates a potential role of BSH in protection of S. aureus during infection.


Assuntos
Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Fatores de Virulência/biossíntese , Animais , Antibacterianos/farmacologia , Antioxidantes , Carga Bacteriana , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Cisteína/biossíntese , Cisteína/genética , Diamida/farmacologia , Farmacorresistência Bacteriana , Células Epiteliais/microbiologia , Fosfomicina/farmacologia , Expressão Gênica , Glucosamina/biossíntese , Glucosamina/genética , Humanos , Peróxido de Hidrogênio/farmacologia , Ácido Hipocloroso/farmacologia , Macrófagos/microbiologia , Camundongos , Oxidantes/farmacologia , Staphylococcus aureus/química , Staphylococcus aureus/genética , Fatores de Virulência/genética
9.
Biochim Biophys Acta Gen Subj ; 1864(7): 129599, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32173377

RESUMO

BACKROUND: Cytosolic glutaredoxin 2 (Grx2c) controls axonal outgrowth and is specifically induced in many cancer cell lines. We thus hypothesized that Grx2c promotes cell motility and invasiveness. METHODS: We characterized the impact of Grx2c expression in cell culture models. We combined stable isotope labeling, phosphopeptide enrichment, and high-accuracy mass spectrometry to characterize the underlying mechanisms. RESULTS: The most prominent associations were found with actin dynamics, cellular adhesion, and receptor-mediated signal transduction, processes that are crucial for cell motility. For instance, collapsin response mediator protein 2, a protein involved in the regulation of cytoskeletal dynamics, is regulated by Grx2c through a redox switch that controls the phosphorylation state of the protein as well. Cell lines expressing Grx2c showed dramatic alterations in morphology. These cells migrated two-fold faster and gained the ability to infiltrate a collagen matrix. CONCLUSIONS: The expression of Grx2c promotes cell migration, and may negatively correlate with cancer-specific survival. GENERAL SIGNIFICANCE: Our results imply critical roles of Grx2c in cytoskeletal dynamics, cell adhesion, and cancer cell invasiveness.


Assuntos
Glutarredoxinas , Neoplasias , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Glutarredoxinas/química , Humanos , Isoformas de Proteínas/metabolismo , Transdução de Sinais
10.
J Bacteriol ; 191(24): 7520-30, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19837798

RESUMO

Glutathione constitutes a key player in the thiol redox buffer in many organisms. However, the gram-positive bacteria Bacillus subtilis and Staphylococcus aureus lack this low-molecular-weight thiol. Recently, we identified S-cysteinylated proteins in B. subtilis after treatment of cells with the disulfide-generating electrophile diamide. S cysteinylation is thought to protect protein thiols against irreversible oxidation to sulfinic and sulfonic acids. Here we show that S thiolation occurs also in S. aureus proteins after exposure to diamide. We further analyzed the formation of inter- and intramolecular disulfide bonds in cytoplasmic proteins using diagonal nonreducing/reducing sodium dodecyl sulfate gel electrophoresis. However, only a few proteins were identified that form inter- or intramolecular disulfide bonds under control and diamide stress conditions in B. subtilis and S. aureus. Depletion of the cysteine pool was concomitantly measured in B. subtilis using a metabolomics approach. Thus, the majority of reversible thiol modifications that were previously detected by two-dimensional gel fluorescence-based thiol modification assay are most likely based on S thiolations. Finally, we found that a glutathione-producing B. subtilis strain which expresses the Listeria monocytogenes gshF gene did not show enhanced oxidative stress resistance compared to the wild type.


Assuntos
Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Diamida/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Compostos de Sulfidrila/metabolismo , Citoplasma/metabolismo , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Estresse Fisiológico
11.
Mol Microbiol ; 69(6): 1513-29, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18673455

RESUMO

SUMMARY: Quinones are highly toxic naturally occurring thiol-reactive compounds. We have previously described novel pathways for quinone detoxification in the Gram-positive bacterium Bacillus subtilis. In this study, we have investigated the extent of irreversible and reversible thiol modifications caused in vivo by electrophilic quinones. Exposure to toxic benzoquinone (BQ) concentrations leads to depletion of numerous Cys-rich cytoplasmic proteins in the proteome of B. subtilis. Mass spectrometry and immunoblot analyses demonstrated that these BQ-depleted proteins represent irreversibly damaged BQ aggregates that escape the two-dimensional gel separation. This enabled us to quantify the depletion of thiol-containing proteins which are the in vivo targets for thiol-(S)-alkylation by toxic quinone compounds. Metabolomic approaches confirmed that protein depletion is accompanied by depletion of the low-molecular-weight (LMW) thiol cysteine. Finally, no increased formation of disulphide bonds was detected in the thiol-redox proteome in response to sublethal quinone concentrations. The glyceraldehyde-3-phosphate dehydrogenase (GapA) was identified as the only new target for reversible thiol modifications after exposure to toxic quinones. Together our data show that the thiol-(S)-alkylation reaction with protein and non-protein thiols is the in vivo mechanism for thiol depletion and quinone toxicity in B. subtilis and most likely also in other bacteria.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Quinonas/farmacologia , Compostos de Sulfidrila/metabolismo , Western Blotting , Cisteína/metabolismo , Citoplasma/química , Eletroforese em Gel Bidimensional , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Espectrometria de Massas , Redes e Vias Metabólicas , Proteoma/análise
12.
J Bacteriol ; 190(14): 4997-5008, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18487332

RESUMO

The nonpathogenic Bacillus subtilis and the pathogen Staphylococcus aureus are gram-positive model organisms that have to cope with the radical nitric oxide (NO) generated by nitrite reductases of denitrifying bacteria and by the inducible NO synthases of immune cells of the host, respectively. The response of both microorganisms to NO was analyzed by using a two-dimensional gel approach. Metabolic labeling of the proteins revealed major changes in the synthesis pattern of cytosolic proteins after the addition of the NO donor MAHMA NONOate. Whereas B. subtilis induced several oxidative stress-responsive regulons controlled by Fur, PerR, OhrR, and Spx, as well as the general stress response controlled by the alternative sigma factor SigB, the more resistant S. aureus showed an increased synthesis rate of proteins involved in anaerobic metabolism. These data were confirmed by nuclear magnetic resonance analyses indicating that NO causes a drastically higher increase in the formation of lactate and butanediol in S. aureus than in B. subtilis. Monitoring the intracellular protein thiol state, we observed no increase in reversible or irreversible protein thiol modifications after NO stress in either organism. Obviously, NO itself does not cause general protein thiol oxidations. In contrast, exposure of cells to NO prior to peroxide stress diminished the irreversible thiol oxidation caused by hydrogen peroxide.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Óxido Nítrico/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo , Bacillus subtilis/metabolismo , Butileno Glicóis/metabolismo , Eletroforese em Gel Bidimensional , Regulação Bacteriana da Expressão Gênica , Ácido Láctico/metabolismo , Espectroscopia de Ressonância Magnética , Proteoma/análise , Staphylococcus aureus/metabolismo
13.
Proteomics ; 8(13): 2676-90, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18601268

RESUMO

Thiol-disulfide oxidoreductases of the thioredoxin superfamily are crucial for maintaining the thiol redox state in living organisms. For the bacterium Bacillus subtilis thioredoxin A (TrxA) was described as the product of an essential gene indicating a key role during growth. By means of mRNA profiling Smits et al. (J. Bacteriol. 2005, 187, 3921-3930) suggested a critical function for TrxA in sulfur utilization during stationary phase. We extended the analysis of TrxA to exponential growth and characterized a trxA conditional mutant by proteome analysis complemented by transcriptomics. After TrxA-depletion, the growth rate was dramatically decreased. The cells responded at mRNA and protein level by the increased expression of genes involved in the utilization of sulfur, which represents the most obvious response as visualized by gel-based proteomics. Furthermore, several genes of the antioxidant response were found at higher expression levels after TrxA-depletion. When sulfate was replaced by thiosulfate or methionine as sulfur source, the growth inhibition was abolished. In the presence of thiosulfate but in the absence of TrxA, the induction of the sulfur limitation response and the oxidative stress response was not observed. Our results show that the global change of gene expression is primarily caused by the interruption of the sulfate utilization after TrxA depletion. Thus, its function in sulfate assimilation renders TrxA an essential protein in growing B. subtilis cells.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/fisiologia , Proteômica/métodos , Tiorredoxinas/metabolismo , Transcrição Gênica , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Tiorredoxinas/genética
14.
Proteomics ; 8(9): 1885-97, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18398877

RESUMO

The balance of hypertrophy and atrophy is critical for the adaptation of cardiac and skeletal muscle mass to the demands of the environment and when deregulated can cause disease. Here we have used a proteomics approach to generate protein reference maps for the mouse heart and skeletal muscle, which provide a molecular basis for future functional and pathophysiological studies. The reference map provides information on molecular mass, pI, and literature data on function and localization, to facilitate the identification of proteins based on their migration in 2-D gels. In total, we have identified 351 cardiac and 284 skeletal muscle protein spots, representing 249 and 214 different proteins, respectively. In addition, we have visualized the protein pattern of mouse heart and skeletal muscle at defined conditions comparing knockout (KO) animals deficient in the sarcomeric protein titin (a genetic atrophy model) and control littermates. We found 20 proteins that were differently expressed linking titin's kinase region to the heat-shock- and proteasomal stress response. Taken together, the established reference maps should provide a suitable tool to relate protein expression and PTM to cardiovascular and skeletal muscle disease using the mouse as an animal model.


Assuntos
Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Proteômica/métodos , Animais , Atrofia , Modelos Animais de Doenças , Desenho de Fármacos , Eletroforese em Gel Bidimensional , Focalização Isoelétrica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteoma , Músculo Quadríceps/metabolismo
15.
Proteomics ; 8(15): 3139-53, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18604844

RESUMO

The high resolution 2-D protein gel electrophoresis technique combined with MALDI-TOF MS and a recently developed fluorescence-based thiol modification assay were used to investigate the cellular response of Staphylococcus aureus to oxidative stress. Addition of hydrogen peroxide, diamide, and the superoxide generating agent paraquat to exponentially growing cells revealed complex changes in the protein expression pattern. In particular, proteins involved in detoxification, repair systems, and intermediary metabolism were found to be up-regulated. Interestingly, there is only a small overlap of proteins induced by all these stressors. Exposure to hydrogen peroxide mediated a significant increase of DNA repair enzymes, whereas treatment with diamide affected proteins involved in protein repair and degradation. The activity of proteins under oxidative stress conditions can be modulated by oxidation of thiol groups. In growing cells, protein thiols were found to be mainly present in the reduced state. Diamide mediated a strong increase of reversibly oxidized thiols in a variety of metabolic enzymes. By contrast, hydrogen peroxide resulted in the reversible oxidation especially of proteins with active site cysteines. Moreover, high levels of hydrogen peroxide influenced the pI of three proteins containing cysteines within their active sites (GapA1, AhpC, and HchA) indicating the generation of sulfinic or sulfonic acid by irreversible oxidation of thiols.


Assuntos
Proteínas de Bactérias/análise , Oxidantes/farmacologia , Proteoma/análise , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Diamida/farmacologia , Eletroforese em Gel Bidimensional , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Paraquat/farmacologia , Proteômica/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
Methods Mol Biol ; 1841: E1, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30523618

RESUMO

This protocol was originally published © Springer Science+Business Media, LLC, part of Springer Nature 2018, but has now been made available © The Author(s) under a CC BY 4.0 license.

17.
Methods Mol Biol ; 1841: 261-275, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30259492

RESUMO

Thiol-redox proteomics methods are rapidly developing tools in redox biology. These are applied to identify and quantify proteins with reversible thiol oxidations that are formed under normal growth and oxidative stress conditions inside cells. The proteins with reversible thiol oxidations are usually prepared by alkylation of reduced thiols, subsequent reduction of disulfide bonds followed by a second differential alkylation of newly released thiols. Here, we describe two methods for detection of protein S-thiolations in Gram-positive bacteria using the direct shotgun approach and the fluorescent-label thiol-redox proteomics method that have been successfully applied in our previous work.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Oxirredução , Proteoma , Proteômica , Compostos de Sulfidrila , Bactérias/química , Proteínas de Bactérias/química , Corantes Fluorescentes , Espectrometria de Massas , Estresse Oxidativo , Proteólise , Proteômica/métodos , Espécies Reativas de Oxigênio/metabolismo , Coloração e Rotulagem , Compostos de Sulfidrila/química , Fluxo de Trabalho
18.
Oxid Med Cell Longev ; 2018: 4829872, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30584462

RESUMO

Nucleoredoxin (Nrx) is an oxidoreductase of the thioredoxin family of proteins. It was shown to act as a signal transducer in some pathways; however, so far, no comprehensive analysis of its regulated substrates and functions was available. Here, we used a combination of two different strategies to fill this gap. First, we analyzed the thiol-redox state of the proteome of SH-SY5Y neuroblastoma cells depleted of Nrx compared to control cells using a differential thiol-labeling technique and quantitative mass spectrometry. 171 proteins were identified with an altered redox state; 161 of these were more reduced in the absence of Nrx. This suggests functions of Nrx in the oxidation of protein thiols. Second, we utilized the active site mutant Cys208Ser of Nrx, which stabilizes a mixed disulfide intermediate with its substrates and therefore trapped interacting proteins from the mouse brain (identifying 1710 proteins) and neuronal cell culture extracts (identifying 609 proteins). Profiling of the affected biological processes and molecular functions in cells of neuronal origin suggests numerous functions of Nrx in the redox regulation of metabolic pathways, cellular morphology, and signal transduction. These results characterize Nrx as a cellular oxidase that itself may be oxidized by the formation of disulfide relays with peroxiredoxins.


Assuntos
Neurônios/metabolismo , Proteínas Nucleares/metabolismo , Oxirredutases/metabolismo , Animais , Western Blotting , Encéfalo/metabolismo , Linhagem Celular Tumoral , Eletroforese em Gel de Poliacrilamida , Humanos , Camundongos , Proteínas Nucleares/genética , Oxirredução , Oxirredutases/genética
19.
Front Microbiol ; 9: 935, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867844

RESUMO

Burkholderia pseudomallei is a soil-dwelling bacterium able to survive not only under adverse environmental conditions, but also within various hosts which can lead to the disease melioidosis. The capability of B. pseudomallei to adapt to environmental changes is facilitated by the large number of regulatory proteins encoded by its genome. Among them are more than 60 uncharacterized LysR-type transcriptional regulators (LTTRs). Here we analyzed a B. pseudomallei mutant harboring a transposon in the gene BPSL0117 annotated as a LTTR, which we named gvmR (globally acting virulence and metabolism regulator). The gvmR mutant displayed a growth defect in minimal medium and macrophages in comparison with the wild type. Moreover, disruption of gvmR rendered B. pseudomallei avirulent in mice indicating a critical role of GvmR in infection. These defects of the mutant were rescued by ectopic expression of gvmR. To identify genes whose expression is modulated by GvmR, global transcriptome analysis of the B. pseudomallei wild type and gvmR mutant was performed using whole genome tiling microarrays. Transcript levels of 190 genes were upregulated and 141 genes were downregulated in the gvmR mutant relative to the wild type. Among the most downregulated genes in the gvmR mutant were important virulence factor genes (T3SS3, T6SS1, and T6SS2), which could explain the virulence defect of the gvmR mutant. In addition, expression of genes related to amino acid synthesis, glyoxylate shunt, iron-sulfur cluster assembly, and syrbactin metabolism (secondary metabolite) was decreased in the mutant. On the other hand, inactivation of GvmR increased expression of genes involved in pyruvate metabolism, ATP synthesis, malleobactin, and porin genes. Quantitative real-time PCR verified the differential expression of 27 selected genes. In summary, our data show that GvmR acts as an activating and repressing global regulator that is required to coordinate expression of a diverse set of metabolic and virulence genes essential for the survival in the animal host and under nutrient limitation.

20.
Mitochondrion ; 33: 72-83, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27456428

RESUMO

Mitochondria are hotspots of cellular redox biochemistry. Respiration as a defining mitochondrial function is made up of a series of electron transfers that are ultimately coupled to maintaining the proton motive force, ATP production and cellular energy supply. The individual reaction steps involved require tight control and flexible regulation to maintain energy and redox balance in the cell under fluctuating demands. Redox regulation by thiol switching has been a long-standing candidate mechanism to support rapid adjustment of mitochondrial protein function at the posttranslational level. Here we review recent advances in our understanding of cysteine thiol switches in the mitochondrial proteome with a focus on their operation in vivo. We assess the conceptual basis for thiol switching in mitochondria and discuss to what extent insights gained from in vitro studies may be valid in vivo, considering thermodynamic, kinetic and structural constraints. We compare functional proteomic approaches that have been used to assess mitochondrial protein thiol switches, including thioredoxin trapping, redox difference gel electrophoresis (redoxDIGE), isotope-coded affinity tag (OxICAT) and iodoacetyl tandem mass tag (iodoTMT) labelling strategies. We discuss conditions that may favour active thiol switching in mitochondrial proteomes in vivo, and appraise recent advances in dissecting their impact using combinations of in vivo redox sensing and quantitative redox proteomics. Finally we focus on four central facets of mitochondrial biology, aging, carbon metabolism, energy coupling and electron transport, exemplifying the current emergence of a mechanistic understanding of mitochondrial regulation by thiol switching in living plants and animals.


Assuntos
Cisteína/metabolismo , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Compostos de Sulfidrila/metabolismo , Adaptação Fisiológica , Animais , Respiração Celular , Metabolismo Energético , Oxirredução , Plantas , Força Próton-Motriz
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa