Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Cell ; 151(5): 1005-16, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23178120

RESUMO

Phage G1 gp67 is a 23 kDa protein that binds to the Staphylococcus aureus (Sau) RNA polymerase (RNAP) σ(A) subunit and blocks cell growth by inhibiting transcription. We show that gp67 has little to no effect on transcription from most promoters but is a potent inhibitor of ribosomal RNA transcription. A 2.0-Å-resolution crystal structure of the complex between gp67 and Sau σ(A) domain 4 (σ(A)(4)) explains how gp67 joins the RNAP promoter complex through σ(A)(4) without significantly affecting σ(A)(4) function. Our results indicate that gp67 forms a complex with RNAP at most, if not all, σ(A)-dependent promoters, but selectively inhibits promoters that depend on an interaction between upstream DNA and the RNAP α-subunit C-terminal domain (αCTD). Thus, we reveal a promoter-specific transcription inhibition mechanism by which gp67 interacts with the RNAP promoter complex through one subunit (σ(A)), and selectively affects the function of another subunit (αCTD) depending on promoter usage.


Assuntos
Inibidores do Crescimento/metabolismo , Myoviridae/metabolismo , Regiões Promotoras Genéticas , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/virologia , Proteínas Virais/metabolismo , Sequência de Bases , Cristalografia por Raios X , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , RNA Bacteriano/genética , RNA Ribossômico/genética , Fator sigma/metabolismo , Staphylococcus aureus/genética , Transcrição Gênica
2.
Proc Natl Acad Sci U S A ; 121(6): e2317453121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289956

RESUMO

The synthesis of proteins as encoded in the genome depends critically on translational fidelity. Nevertheless, errors inevitably occur, and those that result in reading frame shifts are particularly consequential because the resulting polypeptides are typically nonfunctional. Despite the generally maladaptive impact of such errors, the proper decoding of certain mRNAs, including many viral mRNAs, depends on a process known as programmed ribosomal frameshifting. The fact that these programmed events, commonly involving a shift to the -1 frame, occur at specific evolutionarily optimized "slippery" sites has facilitated mechanistic investigation. By contrast, less is known about the scope and nature of error (i.e., nonprogrammed) frameshifting. Here, we examine error frameshifting by monitoring spontaneous frameshift events that suppress the effects of single base pair deletions affecting two unrelated test proteins. To map the precise sites of frameshifting, we developed a targeted mass spectrometry-based method called "translational tiling proteomics" for interrogating the full set of possible -1 slippage events that could produce the observed frameshift suppression. Surprisingly, such events occur at many sites along the transcripts, involving up to one half of the available codons. Only a subset of these resembled canonical "slippery" sites, implicating alternative mechanisms potentially involving noncognate mispairing events. Additionally, the aggregate frequency of these events (ranging from 1 to 10% in our test cases) was higher than we might have anticipated. Our findings point to an unexpected degree of mechanistic diversity among ribosomal frameshifting events and suggest that frameshifted products may contribute more significantly to the proteome than generally assumed.


Assuntos
Escherichia coli , Proteômica , Escherichia coli/genética , Escherichia coli/metabolismo , Mutação da Fase de Leitura/genética , Mudança da Fase de Leitura do Gene Ribossômico/genética , Códon/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(39): e2221539120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37738299

RESUMO

Prions are self-propagating protein aggregates formed by specific proteins that can adopt alternative folds. Prions were discovered as the cause of the fatal transmissible spongiform encephalopathies in mammals, but prions can also constitute nontoxic protein-based elements of inheritance in fungi and other species. Prion propagation has recently been shown to occur in bacteria for more than a hundred cell divisions, yet a fraction of cells in these lineages lost the prion through an unknown mechanism. Here, we investigate prion propagation in single bacterial cells as they divide using microfluidics and fluorescence microscopy. We show that the propagation occurs in two distinct modes. In a fraction of the population, cells had multiple small visible aggregates and lost the prion through random partitioning of aggregates to one of the two daughter cells at division. In the other subpopulation, cells had a stable large aggregate localized to the pole; upon division the mother cell retained this polar aggregate and a daughter cell was generated that contained small aggregates. Extending our findings to prion domains from two orthologous proteins, we observe similar propagation and loss properties. Our findings also provide support for the suggestion that bacterial prions can form more than one self-propagating state. We implement a stochastic version of the molecular model of prion propagation from yeast and mammals that recapitulates all the observed single-cell properties. This model highlights challenges for prion propagation that are unique to prokaryotes and illustrates the conservation of fundamental characteristics of prion propagation.


Assuntos
Príons , Animais , Bactérias , Células Procarióticas , Divisão Celular , Padrões de Herança , Saccharomyces cerevisiae , Mamíferos
4.
Cell ; 138(1): 146-59, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19596241

RESUMO

Mycobacterium tuberculosis is arguably the world's most successful infectious agent because of its ability to control its own cell growth within the host. Bacterial growth rate is closely coupled to rRNA transcription, which in E. coli is regulated through DksA and (p)ppGpp. The mechanisms of rRNA transcriptional control in mycobacteria, which lack DksA, are undefined. Here we identify CarD as an essential mycobacterial protein that controls rRNA transcription. Loss of CarD is lethal for mycobacteria in culture and during infection of mice. CarD depletion leads to sensitivity to killing by oxidative stress, starvation, and DNA damage, accompanied by failure to reduce rRNA transcription. CarD can functionally replace DksA for stringent control of rRNA transcription, even though CarD associates with a different site on RNA polymerase. These findings highlight a distinct molecular mechanism for regulating rRNA transcription in mycobacteria that is critical for M. tuberculosis pathogenesis.


Assuntos
Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/fisiologia , RNA Ribossômico/genética , Tuberculose/microbiologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/metabolismo , Dano ao DNA , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Camundongos , Viabilidade Microbiana , Dados de Sequência Molecular , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Estresse Oxidativo , Regiões Promotoras Genéticas , RNA Ribossômico/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/metabolismo , Transcrição Gênica , Regulação para Cima
5.
Mol Cell ; 60(6): 829-31, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26687597

RESUMO

In this issue of Molecular Cell, Vvedenskaya et al. (2015) describe a high-throughput sequencing-based methodology for the massively parallel analysis of transcription from a high-complexity barcoded template library both in vitro and in vivo, providing a powerful new tool for the study of transcription.


Assuntos
Escherichia coli/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sítio de Iniciação de Transcrição
6.
Proc Natl Acad Sci U S A ; 116(10): 4605-4610, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782808

RESUMO

Prions are infectious, self-propagating protein aggregates that are notorious for causing devastating neurodegenerative diseases in mammals. Recent evidence supports the existence of prions in bacteria. However, the evaluation of candidate bacterial prion-forming proteins has been hampered by the lack of genetic assays for detecting their conversion to an aggregated prion conformation. Here we describe a bacteria-based genetic assay that distinguishes cells carrying a model yeast prion protein in its nonprion and prion forms. We then use this assay to investigate the prion-forming potential of single-stranded DNA-binding protein (SSB) of Campylobacter hominis Our findings indicate that SSB possesses a prion-forming domain that can transition between nonprion and prion conformations. Furthermore, we show that bacterial cells can propagate the prion form over 100 generations in a manner that depends on the disaggregase ClpB. The bacteria-based genetic tool we present may facilitate the investigation of prion-like phenomena in all domains of life.


Assuntos
Escherichia coli/genética , Técnicas Genéticas , Príons/metabolismo , Campylobacter/genética , Campylobacter/metabolismo , Escherichia coli/metabolismo , Genes Reporter , Príons/genética , Transcrição Gênica
7.
Nucleic Acids Res ; 46(2): e12, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29140461

RESUMO

The interaction of RNA molecules with proteins is a critical aspect of gene regulation across all domains of life. Here, we report the development of a bacterial three-hybrid (B3H) assay to genetically detect RNA-protein interactions. The basis for this three-hybrid assay is a transcription-based bacterial two-hybrid assay that has been used widely to detect and dissect protein-protein interactions. In the three-hybrid assay, a DNA-bound protein with a fused RNA-binding moiety (the coat protein of bacteriophage MS2 (MS2CP)) is used to recruit a hybrid RNA upstream of a test promoter. The hybrid RNA consists of a constant region that binds the tethered MS2CP and a variable region. Interaction between the variable region of the hybrid RNA and a target RNA-binding protein that is fused to a subunit of Escherichia coli RNA polymerase (RNAP) stabilizes the binding of RNAP to the test promoter, thereby activating transcription of a reporter gene. We demonstrate that this three-hybrid assay detects interaction between non-coding small RNAs (sRNAs) and the hexameric RNA chaperone Hfq from E. coli and enables the identification of Hfq mutants with sRNA-binding defects. Our findings suggest that this B3H assay will be broadly applicable for the study of RNA-protein interactions.


Assuntos
Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Fator Proteico 1 do Hospedeiro/metabolismo , Pequeno RNA não Traduzido/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Bactérias/genética , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli/genética , Fator Proteico 1 do Hospedeiro/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação , Ligação Proteica , Pequeno RNA não Traduzido/genética , Transcrição Gênica
8.
PLoS Genet ; 13(9): e1007007, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28931012

RESUMO

The toxin components of toxin-antitoxin modules, found in bacterial plasmids, phages, and chromosomes, typically target a single macromolecule to interfere with an essential cellular process. An apparent exception is the chromosomally encoded toxin component of the E. coli CbtA/CbeA toxin-antitoxin module, which can inhibit both cell division and cell elongation. A small protein of only 124 amino acids, CbtA, was previously proposed to interact with both FtsZ, a tubulin homolog that is essential for cell division, and MreB, an actin homolog that is essential for cell elongation. However, whether or not the toxic effects of CbtA are due to direct interactions with these predicted targets is not known. Here, we genetically separate the effects of CbtA on cell elongation and cell division, showing that CbtA interacts directly and independently with FtsZ and MreB. Using complementary genetic approaches, we identify the functionally relevant target surfaces on FtsZ and MreB, revealing that in both cases, CbtA binds to surfaces involved in essential cytoskeletal filament architecture. We show further that each interaction contributes independently to CbtA-mediated toxicity and that disruption of both interactions is required to alleviate the observed toxicity. Although several other protein modulators are known to target FtsZ, the CbtA-interacting surface we identify represents a novel inhibitory target. Our findings establish CbtA as a dual function toxin that inhibits both cell division and cell elongation via direct and independent interactions with FtsZ and MreB.


Assuntos
Proteínas de Bactérias/genética , Divisão Celular/genética , Proteínas do Citoesqueleto/genética , Proteínas de Escherichia coli/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Plasmídeos/genética , Toxinas Biológicas/genética , Toxinas Biológicas/metabolismo
9.
Genes Dev ; 26(23): 2659-67, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23166018

RESUMO

Diverse proteins are known to be capable of forming amyloid aggregates, self-seeding fibrillar assemblies that may be biologically functional or pathological. Well-known examples include neurodegenerative disease-associated proteins that misfold as amyloid, fungal prion proteins that can transition to a self-propagating amyloid form and certain bacterial proteins that fold as amyloid at the cell surface and promote biofilm formation. To further explore the diversity of amyloidogenic proteins, generally applicable methods for identifying them are critical. Here we describe a cell-based method for generating amyloid aggregates that relies on the natural ability of Escherichia coli cells to elaborate amyloid fibrils at the cell surface. We use several different yeast prion proteins and the human huntingtin protein to show that protein secretion via this specialized export pathway promotes acquisition of the amyloid fold specifically for proteins that have an inherent amyloid-forming propensity. Furthermore, our findings establish the potential of this E. coli-based system to facilitate the implementation of high-throughput screens for identifying amyloidogenic proteins and modulators of amyloid aggregation.


Assuntos
Proteínas Amiloidogênicas/análise , Proteínas Amiloidogênicas/metabolismo , Escherichia coli/metabolismo , Biologia Molecular/métodos , Proteínas Amiloidogênicas/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Humanos , Proteína Huntingtina , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Príons/genética , Príons/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Proc Natl Acad Sci U S A ; 113(3): 602-7, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26733675

RESUMO

Production of a messenger RNA proceeds through sequential stages of transcription initiation and transcript elongation and termination. During each of these stages, RNA polymerase (RNAP) function is regulated by RNAP-associated protein factors. In bacteria, RNAP-associated σ factors are strictly required for promoter recognition and have historically been regarded as dedicated initiation factors. However, the primary σ factor in Escherichia coli, σ(70), can remain associated with RNAP during the transition from initiation to elongation, influencing events that occur after initiation. Quantitative studies on the extent of σ(70) retention have been limited to complexes halted during early elongation. Here, we used multiwavelength single-molecule fluorescence-colocalization microscopy to observe the σ(70)-RNAP complex during initiation from the λ PR' promoter and throughout the elongation of a long (>2,000-nt) transcript. Our results provide direct measurements of the fraction of actively transcribing complexes with bound σ(70) and the kinetics of σ(70) release from actively transcribing complexes. σ(70) release from mature elongation complexes was slow (0.0038 s(-1)); a substantial subpopulation of elongation complexes retained σ(70) throughout transcript elongation, and this fraction depended on the sequence of the initially transcribed region. We also show that elongation complexes containing σ(70) manifest enhanced recognition of a promoter-like pause element positioned hundreds of nucleotides downstream of the promoter. Together, the results provide a quantitative framework for understanding the postinitiation roles of σ(70) during transcription.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Fator sigma/metabolismo , Transcrição Gênica , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Cinética , Lasers , Dados de Sequência Molecular , Nucleotídeos/metabolismo , Fotodegradação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Moldes Genéticos , Fatores de Tempo , Elongação da Transcrição Genética
11.
Genes Dev ; 25(1): 77-88, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21205867

RESUMO

The bacterial RNA polymerase (RNAP) holoenzyme consists of a catalytic core enzyme (α(2)ßß'ω) in complex with a σ factor that is essential for promoter recognition and transcription initiation. During early elongation, the stability of interactions between σ and the remainder of the transcription complex decreases. Nevertheless, there is no mechanistic requirement for release of σ upon the transition to elongation. Furthermore, σ can remain associated with RNAP during transcription elongation and influence regulatory events that occur during transcription elongation. Here we demonstrate that promoter-like DNA sequence elements within the initial transcribed region that are known to induce early elongation pausing through sequence-specific interactions with σ also function to increase the σ content of downstream elongation complexes. Our findings establish σ-dependent pausing as a mechanism by which initial transcribed region sequences can influence the composition and functional properties of the transcription elongation complex over distances of at least 700 base pairs.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Fator sigma/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , RNA Polimerases Dirigidas por DNA/química , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Alinhamento de Sequência , Fator sigma/química
12.
Mol Microbiol ; 105(4): 652-662, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28598017

RESUMO

Sporulation in Bacillus subtilis is governed by a cascade of alternative RNA polymerase sigma factors. We previously identified a small protein Fin that is produced under the control of the sporulation sigma factor σF to create a negative feedback loop that inhibits σF -directed gene transcription. Cells deleted for fin are defective for spore formation and exhibit increased levels of σF -directed gene transcription. Based on pull-down experiments, chemical crosslinking, bacterial two-hybrid experiments and nuclear magnetic resonance chemical shift analysis, we now report that Fin binds to RNA polymerase and specifically to the coiled-coil region of the ß' subunit. The coiled-coil is a docking site for sigma factors on RNA polymerase, and evidence is presented that the binding of Fin and σF to RNA polymerase is mutually exclusive. We propose that Fin functions by a mechanism distinct from that of classic sigma factor antagonists (anti-σ factors), which bind directly to a target sigma factor to prevent its association with RNA polymerase, and instead functions to inhibit σF by competing for binding to the ß' coiled-coil.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/fisiologia , Fator sigma/fisiologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/metabolismo , Fator sigma/metabolismo , Esporos Bacterianos/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética
13.
Nucleic Acids Res ; 44(11): 5378-89, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27025650

RESUMO

The NusA protein is a universally conserved bacterial transcription elongation factor that binds RNA polymerase (RNAP). When functioning independently, NusA enhances intrinsic termination. Paradoxically, NusA stimulates the function of the N and Q antiterminator proteins of bacteriophage λ. The mechanistic basis for NusA's functional plasticity is poorly understood. Here we uncover an effect of nascent RNA length on the ability of NusA to collaborate with Q. Ordinarily, Q engages RNAP during early elongation when it is paused at a specific site just downstream of the phage late-gene promoter. NusA facilitates this engagement process and both proteins remain associated with the transcription elongation complex (TEC) as it escapes the pause and transcribes the late genes. We show that the λ-related phage 82 Q protein (82Q) can also engage RNAP that is paused at a promoter-distal position and thus contains a nascent RNA longer than that associated with the natively positioned TEC. However, the effect of NusA in this context is antagonistic rather than stimulatory. Moreover, cleaving the long RNA associated with the promoter-distal TEC restores NusA's stimulatory effect. Our findings reveal a critical role for nascent RNA in modulating NusA's effect on 82Q-mediated antitermination, with implications for understanding NusA's functional plasticity.


Assuntos
Proteínas de Bactérias/metabolismo , RNA/genética , RNA/metabolismo , Terminação da Transcrição Genética , Fatores de Elongação da Transcrição/metabolismo , Proteínas de Bactérias/química , Ligação Competitiva , Modelos Biológicos , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Elongação da Transcrição/química , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/metabolismo
14.
J Bacteriol ; 199(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28507241

RESUMO

Sigma (σ) factors direct gene transcription by binding to and determining the promoter recognition specificity of RNA polymerase (RNAP) in bacteria. Genes transcribed under the control of alternative sigma factors allow cells to respond to stress and undergo developmental processes, such as sporulation in Bacillus subtilis, in which gene expression is controlled by a cascade of alternative sigma factors. Binding of sigma factors to RNA polymerase depends on the coiled-coil (or clamp helices) motif of the ß' subunit. We have identified an amino acid substitution (L257P) in the coiled coil that markedly inhibits the function of σH, the earliest-acting alternative sigma factor in the sporulation cascade. Cells with this mutant RNAP exhibited an early and severe block in sporulation but not in growth. The mutant was strongly impaired in σH-directed gene expression but not in the activity of the stress-response sigma factor σB Pulldown experiments showed that the mutant RNAP was defective in associating with σH but could still associate with σA and σB The differential effects of the L257P substitution on sigma factor binding to RNAP are likely due to a conformational change in the ß' coiled coil that is specifically detrimental for interaction with σH This is the first example, to our knowledge, of an amino acid substitution in RNAP that exhibits a strong differential effect on a particular alternative sigma factor.IMPORTANCE In bacteria, all transcription is mediated by a single multisubunit RNA polymerase (RNAP) enzyme. However, promoter-specific transcription initiation necessitates that RNAP associates with a σ factor. Bacteria contain a primary σ factor that directs transcription of housekeeping genes and alternative σ factors that direct transcription in response to environmental or developmental cues. We identified an amino acid substitution (L257P) in the B. subtilis ß' subunit whereby RNAPL257P associates with some σ factors (σA and σB) and enables vegetative cell growth but is defective in utilization of σH and is consequently blocked for sporulation. To our knowledge, this is the first identification of an amino acid substitution within the core enzyme that affects utilization of a specific sigma factor.


Assuntos
Bacillus subtilis/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Fator sigma , Substituição de Aminoácidos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência Conservada , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Modelos Moleculares , Conformação Proteica
15.
Genes Dev ; 23(15): 1818-29, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19651989

RESUMO

The obligate intracellular human pathogen Chlamydia trachomatis undergoes a complex developmental program involving transition between two forms: the infectious elementary body (EB), and the rapidly dividing reticulate body (RB). However, the regulators controlling this development have not been identified. To uncover potential regulators of transcription in C. trachomatis, we screened a C. trachomatis genomic library for sequences encoding proteins that interact with RNA polymerase (RNAP). We report the identification of one such protein, CT663, which interacts with the beta and sigma subunits of RNAP. Specifically, we show that CT663 interacts with the flap domain of the beta subunit (beta-flap) and conserved region 4 of the primary sigma subunit (sigma(66) in C. trachomatis). We find that CT663 inhibits sigma(66)-dependent (but not sigma(28)-dependent) transcription in vitro, and we present evidence that CT663 exerts this effect as a component of the RNAP holoenzyme. The analysis of C. trachomatis-infected cells reveals that CT663 begins to accumulate at the commencement of the RB-to-EB transition. Our findings suggest that CT663 functions as a negative regulator of sigma(66)-dependent transcription, facilitating a global change in gene expression. The strategy used here is generally applicable in cases where genetic tools are unavailable.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/enzimologia , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Fator sigma/metabolismo , Chlamydia trachomatis/metabolismo , Escherichia coli/enzimologia
16.
Nucleic Acids Res ; 41(15): 7429-37, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23761437

RESUMO

The ability to artificially control transcription is essential both to the study of gene function and to the construction of synthetic gene networks with desired properties. Cas9 is an RNA-guided double-stranded DNA nuclease that participates in the CRISPR-Cas immune defense against prokaryotic viruses. We describe the use of a Cas9 nuclease mutant that retains DNA-binding activity and can be engineered as a programmable transcription repressor by preventing the binding of the RNA polymerase (RNAP) to promoter sequences or as a transcription terminator by blocking the running RNAP. In addition, a fusion between the omega subunit of the RNAP and a Cas9 nuclease mutant directed to bind upstream promoter regions can achieve programmable transcription activation. The simple and efficient modulation of gene expression achieved by this technology is a useful asset for the study of gene networks and for the development of synthetic biology and biotechnological applications.


Assuntos
Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , RNA Bacteriano/metabolismo , Ativação Transcricional , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Redes Reguladoras de Genes , Genes Sintéticos , Loci Gênicos , Sequências Repetidas Invertidas , Regiões Promotoras Genéticas , Ligação Proteica , RNA Bacteriano/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética
17.
Nature ; 452(7190): 1022-5, 2008 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-18432246

RESUMO

Bacteriophage lambda has for many years been a model system for understanding mechanisms of gene regulation. A 'genetic switch' enables the phage to transition from lysogenic growth to lytic development when triggered by specific environmental conditions. The key component of the switch is the cI repressor, which binds to two sets of three operator sites on the lambda chromosome that are separated by about 2,400 base pairs (bp). A hallmark of the lambda system is the pairwise cooperativity of repressor binding. In the absence of detailed structural information, it has been difficult to understand fully how repressor molecules establish the cooperativity complex. Here we present the X-ray crystal structure of the intact lambda cI repressor dimer bound to a DNA operator site. The structure of the repressor, determined by multiple isomorphous replacement methods, reveals an unusual overall architecture that allows it to adopt a conformation that appears to facilitate pairwise cooperative binding to adjacent operator sites.


Assuntos
Bacteriófago lambda/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Regiões Operadoras Genéticas/genética , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/metabolismo , Regulação Alostérica , Sítio Alostérico , Bacteriófago lambda/genética , Cristalografia por Raios X , Dimerização , Modelos Biológicos , Conformação Proteica , Relação Estrutura-Atividade
18.
Proc Natl Acad Sci U S A ; 108(50): 19961-6, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22135460

RESUMO

Activated transcription of the bacteriophage T4 late genes, which is coupled to concurrent DNA replication, is accomplished by an initiation complex containing the host RNA polymerase associated with two phage-encoded proteins, gp55 (the basal promoter specificity factor) and gp33 (the coactivator), as well as the DNA-mounted sliding-clamp processivity factor of the phage T4 replisome (gp45, the activator). We have determined the 3.0 Å-resolution X-ray crystal structure of gp33 complexed with its RNA polymerase binding determinant, the ß-flap domain. Like domain 4 of the promoter specificity σ factor (σ(4)), gp33 interacts with RNA polymerase primarily by clamping onto the helix at the tip of the ß-flap domain. Nevertheless, gp33 and σ(4) are not structurally related. The gp33/ß-flap structure, combined with biochemical, biophysical, and structural information, allows us to generate a structural model of the T4 late promoter initiation complex. The model predicts protein/protein interactions within the complex that explain the presence of conserved patches of surface-exposed residues on gp33, and provides a structural framework for interpreting and designing future experiments to functionally characterize the complex.


Assuntos
Bacteriófago T4/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Subunidades Proteicas/química , Transativadores/química , Proteínas Virais/química , Sequência de Aminoácidos , Sequência Conservada , Cristalografia por Raios X , RNA Polimerases Dirigidas por DNA , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/metabolismo , Homologia de Sequência de Aminoácidos , Fator sigma/química , Transativadores/metabolismo , Transcrição Gênica , Proteínas Virais/metabolismo
19.
J Bacteriol ; 195(16): 3621-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23749973

RESUMO

Promoter recognition in bacteria is mediated primarily by the σ subunit of RNA polymerase (RNAP), which makes sequence-specific contacts with the promoter -10 and -35 elements in the context of the RNAP holoenzyme. However, the RNAP α subunit can also contribute to promoter recognition by making sequence-specific contacts with upstream (UP) elements that are associated with a subset of promoters, including the rRNA promoters. In Escherichia coli, these interactions between the RNAP α subunit (its C-terminal domain [CTD], in particular) and UP element DNA result in significant stimulation of rRNA transcription. Among the many cellular and bacteriophage-encoded regulators of transcription initiation that have been functionally dissected, most exert their effects via a direct interaction with either the σ or the α subunit. An unusual example is provided by a phage-encoded inhibitor of RNA synthesis in Staphylococcus aureus. This protein, phage G1 gp67, which binds tightly to σ in the context of the S. aureus RNAP holoenzyme, has recently been shown to exert selective effects on transcription by inhibiting the function of the α subunit CTD (αCTD). Here we report the development of a gp67-responsive E. coli-based transcription system. We examine transcription in vitro from promoters that do or do not carry the UP element associated with a well-characterized E. coli rRNA promoter. Our findings indicate that the αCTD can increase promoter activity significantly even in the absence of an UP element. We also find that gp67 can exert αCTD-dependent or αCTD-independent effects on transcription depending on the particular promoter, indicating that the mechanism of gp67 action is context dependent.


Assuntos
Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Fagos de Staphylococcus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Fagos de Staphylococcus/genética , Staphylococcus aureus
20.
Proc Natl Acad Sci U S A ; 107(23): 10596-601, 2010 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20484678

RESUMO

Prions are infectious, self-propagating protein aggregates that have been identified in evolutionarily divergent members of the eukaryotic domain of life. Nevertheless, it is not yet known whether prokaryotes can support the formation of prion aggregates. Here we demonstrate that the yeast prion protein Sup35 can access an infectious conformation in Escherichia coli cells and that formation of this material is greatly stimulated by the presence of a transplanted [PSI(+)] inducibility factor, a distinct prion that is required for Sup35 to undergo spontaneous conversion to the prion form in yeast. Our results establish that the bacterial cytoplasm can support the formation of infectious prion aggregates, providing a heterologous system in which to study prion biology.


Assuntos
Escherichia coli/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Escherichia coli/genética , Fatores de Terminação de Peptídeos/genética , Príons/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Solubilidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa