Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 155(5): 3144-3155, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38727548

RESUMO

An ocean acoustics experiment in 2017 near a shipping lane on the New England continental shelf in about 75 m of water provided an opportunity to evaluate a methodology to extract source signatures of merchant ships in a bottom-limited environment. The data of interest are the received acoustic levels during approximately 20 min time intervals centered at the closest position of approach (CPA) time for each channel on two 16-element vertical line arrays. At the CPA ranges, the received levels exhibit a frequency-dependent peak and null structure, which possesses information about the geophysical properties of the seabed, such as the porosity and sediment thickness, and the characterization of the source, such as an effective source depth. The modeled seabed is represented by two sediment layers, parameterized with the viscous grain shearing (VGS) model, which satisfies causality, over a fixed deep layered structure. Inferred estimates of the implicit source levels require averaging an error function over the full 20 min time intervals. Within the 200-700 Hz band, the Wales-Heitmeyer model captures the inferred frequency dependence of the source levels.

2.
J Acoust Soc Am ; 155(3): 1825-1839, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38445985

RESUMO

This paper presents inversion results for three datasets collected on three spatially separated mud depocenters (hereafter called mud ponds) during the 2022 Seabed Characterization Experiment (SBCEX). The data considered here represent modal time-frequency (TF) dispersion as estimated from a single hydrophone. Inversion is performed using a trans-dimensional (trans-D) Bayesian inference method that jointly estimates water-column and seabed properties along with associated uncertainties. This enables successful estimation of the seafloor properties, consistent with in situ acoustic core measurements, even when the water column is dynamical and mostly unknown. A quantitative analysis is performed to (1) compare results with previous modal TF trans-D studies for one mud pond but under different oceanographic condition, and (2) inter-compare the new SBCEX22 results for the three mud ponds. Overall, the estimated mud geoacoustic properties show no significant temporal variability. Further, no significant spatial variability is found between two of the mud ponds while the estimated geoacoustic properties of the third are different. Two hypotheses, considered to be equally likely, are explored to explain this apparent spatial variability: it may be the result of actual differences in the mud properties, or the mud properties may be similar but the inversion results are driven by difference in data information content.

3.
JASA Express Lett ; 4(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38829282

RESUMO

Large surface wave breaking events in deep water are acoustically detectable by beamforming at 5-6 kHz with a mid-frequency planar array located 130 m below the surface. Due to the array's depth and modest 1 m horizontal aperture, wave breaking events cannot be tracked accurately by beamforming alone. Their trajectories are estimated instead by splitting the array into sub-arrays, beamforming each sub-array toward the source, and computing the temporal cross-correlation of the sub-array beams. Source tracks estimated from sub-array cross-correlations match the trajectories of breaking waves that are visible in aerial images of the ocean surface above the array.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa