Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894603

RESUMO

Addressing the growing need for methods for ecofriendly dye removal from aqueous media, this study explores the potential of rice husks coated with iron oxide (Fe2O3@RH composites) for efficient Acid Blue 25 decontamination. The adsorption potential of Acid Blue 25 is analyzed using raw rice husks and Fe2O3 nanoparticles in the literature, but their enhanced removal capacity by means of Fe2O3@RH composites is reported for the first time in this study. Fe2O3@RH composites were analyzed by using analytical techniques such as TGA, SEM, FTIR, BET, and the point of zero charge (pH(PZC)). The Acid Blue 25 adsorption experiment using Fe2O3@RH composites showed maximum adsorption at an initial concentration of Acid Blue 25 of 80 ppm, a contact time of 50 min, a temperature of 313 K, 0.25 g of Fe2O3@RH composites, and a pH of 2. The maximum percentage removal of Acid Blue 25 was found to be 91%. Various linear and nonlinear kinetic and isothermal models were used in this study to emphasize the importance and necessity of the adsorption process. Adsorption isotherms such as the Freundlich, Temkin, Langmuir, and Dubinin-Radushkevich (D-R) models were applied. The results showed that all the isotherms were best fitted on the data, except the linear form of the D-R isotherm. Adsorption kinetics such as the intraparticle kinetic model, the Elovich kinetic model, and the pseudo-first-order and pseudo-second-order models were applied. All the kinetic models were found to be best fitted on the data, except the PSO model (types II, III, and IV). Thermodynamic parameters such as ΔG° (KJ/mol), ΔH° (KJ/mol), and ΔS° (J/K*mol) were studied, and the reaction was found to be exothermic in nature with an increase in the entropy of the system, which supported the adsorption phenomenon. The current study contributes to a comprehensive understanding of the adsorption process and its underlying mechanisms through characterization, the optimization of the conditions, and the application of various models. The findings of the present study suggest practical applications of this method in wastewater treatment and environmental remediation.

2.
Plant Signal Behav ; 19(1): 2318513, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38526224

RESUMO

Plant growth-promoting rhizobacteria (PGPRs) have been utilized to immobilize heavy metals, limiting their translocation in metal contaminated settings. However, studies on the mechanisms and interactions that elucidate how PGPRs mediate Nickel (Ni) tolerance in plants are rare. Thus, in this study we investigated how two pre-characterized heavy metal tolerant isolates of Morganella morganii (ABT9 and ABT3) improve Ni stress tolerance in Arabidopsis while enhancing its growth and yield. Arabidopsis seedlings were grown for five weeks in control/Ni contaminated (control, 1.5 mM and 2.5 mM) potted soil, in the presence or absence of PGPRs. Plant growth characteristics, quantum yield, and antioxidative enzymatic activities were analyzed to assess the influence of PGPRs on plant physiology. Oxidative stress tolerance was quantified by measuring MDA accumulation in Arabidopsis plants. As expected, Ni stress substantially reduced plant growth (shoot and root fresh weight by 53.25% and 58.77%, dry weight by 49.80% and 57.41% and length by 47.16% and 64.63% over control), chlorophyll content and quantum yield (by 40.21% and 54.37% over control). It also increased MDA content by 84.28% at higher (2.5 mM) Ni concentrations. In contrast, inoculation with M. morganii led to significant improvements in leaf chlorophyll, quantum yield, and Arabidopsis biomass production. The mitigation of adverse effects of Ni stress on biomass observed in M. morganii-inoculated plants was attributed to the enhancement of antioxidative enzyme activities compared to Ni-treated plants. This upregulation of the antioxidative defense mechanism mitigated Ni-induced oxidative stress, leading to improved performance of the photosynthetic machinery, which, in turn, enhanced chlorophyll content and quantum yield. Understanding the underlying mechanisms of these tolerance-inducing processes will help to complete the picture of PGPRs-mediated defense signaling. Thus, it suggests that M. morganii PGPRs candidate can potentially be utilized for plant growth promotion by reducing oxidative stress via upregulating antioxidant defense systems in Ni-contaminated soils and reducing Ni metal uptake.


Assuntos
Arabidopsis , Morganella morganii , Níquel/farmacologia , Antioxidantes , Clorofila
3.
Front Plant Sci ; 14: 1230559, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078080

RESUMO

Yellow mosaic disease (YMD) is one of the major devastating constraints to soybean production in Pakistan. In the present study, we report the identification of resistant soybean germplasm and a novel mutation linked with disease susceptibility. Diverse soybean germplasm were screened to identify YMD-resistant lines under natural field conditions during 2016-2020. The severity of YMD was recorded based on symptoms and was grouped according to the disease rating scale, which ranges from 0 to 5, and named as highly resistant (HR), moderately resistant (MR), resistant (R), susceptible (S), moderately susceptible (MS), and highly susceptible (HS), respectively. A HR plant named "NBG-SG Soybean" was identified, which showed stable resistance for 5 years (2016-2020) at the experimental field of the National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan, a location that is a hot spot area for virus infection. HS soybean germplasm were also identified as NBG-47 (PI628963), NBG-117 (PI548655), SPS-C1 (PI553045), SPS-C9 (PI639187), and cv. NARC-2021. The YMD adversely affected the yield and a significant difference was found in the potential yield of NBG-SG-soybean (3.46 ± 0.13a t/ha) with HS soybean germplasm NARC-2021 (0.44 ± 0.01c t/ha) and NBG-117 (1.12 ± 0.01d t/ha), respectively. The YMD incidence was also measured each year (2016-2020) and data showed a significant difference in the percent disease incidence in the year 2016 and 2018 and a decrease after 2019 when resistant lines were planted. The resistance in NBG-SG soybean was further confirmed by testing for an already known mutation (SNP at 149th position) for YMD in the Glyma.18G025100 gene of soybean. The susceptible soybean germplasm in the field was found positive for the said mutation. Moreover, an ortholog of the CYR-1 viral resistance gene from black gram was identified in soybean as Glyma.13G194500, which has a novel deletion (28bp/90bp) in the 5`UTR of susceptible germplasm. The characterized soybean lines from this study will assist in starting soybean breeding programs for YMD resistance. This is the first study regarding screening and molecular analysis of soybean germplasm for YMD resistance.

4.
Front Plant Sci ; 14: 1263813, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126015

RESUMO

Introduction: Nanoparticles play a vital role in environmental remediation on a global scale. In recent years, there has been an increasing demand to utilize nanoparticles in wastewater treatment due to their remarkable physiochemical properties. Methods: In the current study, manganese oxide nanoparticles (MnO-NPs) were synthesized from the Bacillus flexus strain and characterized by UV/Vis spectroscopy, X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy. Results: The objective of this study was to evaluate the potential of biosynthesized MnO-NPs to treat wastewater. Results showed the photocatalytic degradation and adsorption potential of MnO-NPs for chemical oxygen demand, sulfate, and phosphate were 79%, 64%, and 64.5%, respectively, depicting the potential of MnO-NPs to effectively reduce pollutants in wastewater. The treated wastewater was further utilized for the cultivation of wheat seedlings through a pot experiment. It was observed that the application of treated wastewater showed a significant increase in growth, physiological, and antioxidant attributes. However, the application of treated wastewater led to a significant decrease in oxidative stress by 40%. Discussion: It can be concluded that the application of MnO-NPs is a promising choice to treat wastewater as it has the potential to enhance the growth, physiological, and antioxidant activities of wheat seedlings.

5.
Environ Sci Pollut Res Int ; 24(26): 21272-21282, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28741206

RESUMO

Upon screening for novel and potential biocompounds with larvicidal activities, we successfully isolated hamisonine (HMSN) a limonoid compound from endophytic fungi Penicillium oxalicum LA-1 of Limonia acidissima. The extracted compound structure was elucidated by spectral studies such as UV-vis spectroscopy, thin-layer chromatography, FTIR, LC-ESI-MS, 1H NMR, and 13C NMR upon comparing with the spectral data available in the literature. Further, the isolated HMSN was tested against III and IV instar Culex quinquefasciatus larvae. The outcome of this study clearly emphasize that the extracted compound HMSN possesses a stupendous larvicidal activity in a dose-dependent manner with the LC50 and LC90 values of 1.779 and 7.685 ppm against III instar larvae and 3.031 and 28.498 ppm against IV instar larvae of C. quinquefasciatus, respectively. Interestingly, the histological studies evidently showing the damage of peritrophic membrane and epithelial cells of testing mosquito larvae.


Assuntos
Culex/efeitos dos fármacos , Inseticidas/farmacologia , Limoninas/isolamento & purificação , Penicillium/química , Aedes , Animais , Anopheles , Cromatografia em Camada Fina , Inseticidas/isolamento & purificação , Larva/efeitos dos fármacos , Limoninas/farmacologia , Mosquitos Vetores , Folhas de Planta/química , Rutaceae/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa