Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Biochemistry ; 62(3): 835-850, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36706455

RESUMO

The heme enzyme chlorite dismutase (Cld) catalyzes the degradation of chlorite to chloride and dioxygen. Many questions about the molecular reaction mechanism of this iron protein have remained unanswered, including the electronic nature of the catalytically relevant oxoiron(IV) intermediate and its interaction with the distal, flexible, and catalytically active arginine. Here, we have investigated the dimeric Cld from Cyanothece sp. PCC7425 (CCld) and two variants having the catalytic arginine R127 (i) hydrogen-bonded to glutamine Q74 (wild-type CCld), (ii) arrested in a salt bridge with a glutamate (Q74E), or (iii) being fully flexible (Q74V). Presented stopped-flow spectroscopic studies demonstrate the initial and transient appearance of Compound I in the reaction between CCld and chlorite at pH 5.0 and 7.0 and the dominance of spectral features of an oxoiron(IV) species (418, 528, and 551 nm) during most of the chlorite degradation period at neutral and alkaline pH. Arresting the R127 in a salt bridge delays chlorite decomposition, whereas increased flexibility accelerates the reaction. The dynamics of R127 does not affect the formation of Compound I mediated by hypochlorite but has an influence on Compound I stability, which decreases rapidly with increasing pH. The decrease in activity is accompanied by the formation of protein-based amino acid radicals. Compound I is demonstrated to oxidize iodide, chlorite, and serotonin but not hypochlorite. Serotonin is able to dampen oxidative damage and inactivation of CCld at neutral and alkaline pH. Presented data are discussed with respect to the molecular mechanism of Cld and the pronounced pH dependence of chlorite degradation.


Assuntos
Arginina , Serotonina , Concentração de Íons de Hidrogênio , Cinética
2.
J Biol Chem ; 298(11): 102514, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36150500

RESUMO

The heme enzyme myeloperoxidase (MPO) is one of the key players in the neutrophil-mediated killing of invading pathogens as part of the innate immune system. MPO generates antimicrobial oxidants, which indiscriminately and effectively kill phagocytosed pathogens. Staphylococcus aureus, however, is able to escape this fate, in part by secreting a small protein called SPIN (Staphylococcal Peroxidase Inhibitor), which specifically targets and inhibits MPO in a structurally complex manner. Here, we present the first crystal structures of the complex of SPIN-aureus and a truncated version (SPIN-truncated) with mature dimeric leukocyte MPO. We unravel the contributions of the two domains to the kinetics and thermodynamics of SPIN-aureus binding to MPO by using a broad array of complementary biochemical and biophysical methods. The C-terminal "recognition" domain is shown to mediate specific binding to MPO, while interaction of the N-terminal "inhibitory" domain is guided mainly by hydrophobic effects and thus is less sequence dependent. We found that inhibition of MPO is achieved by reducing substrate migration, but SPIN-aureus cannot completely block MPO activity. Its' effectiveness is inversely related to substrate size, with no discernible dependence on other factors. Thus, SPIN-aureus is an extremely high-affinity inhibitor and highly efficient for substrates larger than halogens. As aberrant MPO activity is implicated in a number of chronic inflammatory diseases, SPIN-aureus is the first promising protein inhibitor for specific inhibition of human MPO.


Assuntos
Peroxidase , Infecções Estafilocócicas , Humanos , Peroxidase/metabolismo , Staphylococcus , Staphylococcus aureus/metabolismo , Neutrófilos/metabolismo
3.
Glycobiology ; 32(5): 404-413, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35088086

RESUMO

Elevated plasma and tissues histamine concentrations can cause severe symptoms in mast cell activation syndrome, mastocytosis or anaphylaxis. Endogenous and recombinant human diamine oxidase (rhDAO) can rapidly and completely degrade histamine, and administration of rhDAO represents a promising new treatment approach for diseases with excess histamine release from activated mast cells. We recently generated heparin-binding motif mutants of rhDAO with considerably increased in vivo half-lives in rodents compared with the rapidly cleared wildtype protein. Herein, we characterize the role of an evolutionary recently added glycosylation site asparagine 168 in the in vivo clearance and the influence of an unusually solvent accessible free cysteine 123 on the oligomerization of diamine oxidase (DAO). Mutation of the unpaired cysteine 123 strongly reduced oligomerization without influence on enzymatic DAO activity and in vivo clearance. Recombinant hDAO produced in ExpiCHO-S™ cells showed a 15-fold reduction in the percentage of glycans with terminal sialic acid at Asn168 compared with Chinese hamster ovary (CHO)-K1 cells. Capping with sialic acid was also strongly reduced at the other glycosylation sites. The high abundance of terminal mannose and N-acetylglucosamine residues in the four glycans expressed in ExpiCHO-S™ cells compared with CHO-K1 cells resulted in rapid in vivo clearance. Mutation of Asn168 or sialidase treatment also significantly increased clearance. Intact N-glycans at Asn168 seem to protect DAO from rapid clearance in rodents. Full processing of all glycoforms is critical for preserving the improved in vivo half-life characteristics of the rhDAO heparin-binding motif mutants.


Assuntos
Amina Oxidase (contendo Cobre) , Amina Oxidase (contendo Cobre)/química , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Cisteína , Glicosilação , Heparina , Histamina/metabolismo , Humanos , Ácido N-Acetilneuramínico , Polissacarídeos/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Biophys J ; 120(17): 3600-3614, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34339636

RESUMO

Monoderm bacteria utilize coproheme decarboxylases (ChdCs) to generate heme b by a stepwise decarboxylation of two propionate groups of iron coproporphyrin III (coproheme), forming two vinyl groups. This work focuses on actinobacterial ChdC from Corynebacterium diphtheriae (CdChdC) to elucidate the hydrogen peroxide-mediated decarboxylation of coproheme via monovinyl monopropionyl deuteroheme (MMD) to heme b, with the principal aim being to understand the reorientation mechanism of MMD during turnover. Wild-type CdChdC and variants, namely H118A, H118F, and A207E, were studied by resonance Raman and ultraviolet-visible spectroscopy, mass spectrometry, and molecular dynamics simulations. As actinobacterial ChdCs use a histidine (H118) as a distal base, we studied the H118A and H118F variants to elucidate the effect of 1) the elimination of the proton acceptor and 2) steric constraints within the active site. The A207E variant mimics the proximal H-bonding network found in chlorite dismutases. This mutation potentially increases the rigidity of the proximal site and might impair the rotation of the reaction intermediate MMD. We found that both wild-type CdChdC and the variant H118A convert coproheme mainly to heme b upon titration with H2O2. Interestingly, the variant A207E mostly accumulates MMD along with small amounts of heme b, whereas H118F is unable to produce heme b and accumulates only MMD. Together with molecular dynamics simulations, the spectroscopic data provide insight into the reaction mechanism and the mode of reorientation of MMD, i.e., a rotation in the active site versus a release and rebinding.


Assuntos
Carboxiliases , Corynebacterium diphtheriae , Carboxiliases/metabolismo , Corynebacterium diphtheriae/genética , Corynebacterium diphtheriae/metabolismo , Descarboxilação , Heme/metabolismo , Peróxido de Hidrogênio
5.
Biochemistry ; 60(8): 621-634, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33586945

RESUMO

Chlorite dismutases (Clds) are heme b-containing oxidoreductases that can decompose chlorite to chloride and molecular oxygen. They are divided in two clades that differ in oligomerization, subunit architecture, and the hydrogen-bonding network of the distal catalytic arginine, which is proposed to switch between two conformations during turnover. To understand the impact of the conformational dynamics of this basic amino acid on heme coordination, structure, and catalysis, Cld from Cyanothece sp. PCC7425 was used as a model enzyme. As typical for a clade 2 Cld, its distal arginine 127 is hydrogen-bonded to glutamine 74. The latter has been exchanged with either glutamate (Q74E) to arrest R127 in a salt bridge or valine (Q74V) that mirrors the setting in clade 1 Clds. We present the X-ray crystal structures of Q74V and Q74E and demonstrate the pH-induced changes in the environment and coordination of the heme iron by ultraviolet-visible, circular dichroism, and electron paramagnetic resonance spectroscopies as well as differential scanning calorimetry. The conformational dynamics of R127 is shown to have a significant role in heme coordination during the alkaline transition and in the thermal stability of the heme cavity, whereas its impact on the catalytic efficiency of chlorite degradation is relatively small. The findings are discussed with respect to (i) the flexible loop connecting the N-terminal and C-terminal ferredoxin-like domains, which differs in clade 1 and clade 2 Clds and carries Q74 in clade 2 proteins, and (ii) the proposed role(s) of the arginine in catalysis.


Assuntos
Arginina/metabolismo , Cloretos/metabolismo , Cyanothece/enzimologia , Heme/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Temperatura , Arginina/química , Catálise , Estabilidade Enzimática , Heme/química , Ligação de Hidrogênio , Cinética , Modelos Moleculares
6.
J Biol Chem ; 295(39): 13488-13501, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32723869

RESUMO

Since the advent of protein crystallography, atomic-level macromolecular structures have provided a basis to understand biological function. Enzymologists use detailed structural insights on ligand coordination, interatomic distances, and positioning of catalytic amino acids to rationalize the underlying electronic reaction mechanisms. Often the proteins in question catalyze redox reactions using metal cofactors that are explicitly intertwined with their function. In these cases, the exact nature of the coordination sphere and the oxidation state of the metal is of utmost importance. Unfortunately, the redox-active nature of metal cofactors makes them especially susceptible to photoreduction, meaning that information obtained by photoreducing X-ray sources about the environment of the cofactor is the least trustworthy part of the structure. In this work we directly compare the kinetics of photoreduction of six different heme protein crystal species by X-ray radiation. We show that a dose of ∼40 kilograys already yields 50% ferrous iron in a heme protein crystal. We also demonstrate that the kinetics of photoreduction are completely independent from variables unique to the different samples tested. The photoreduction-induced structural rearrangements around the metal cofactors have to be considered when biochemical data of ferric proteins are rationalized by constraints derived from crystal structures of reduced enzymes.


Assuntos
Compostos Férricos/química , Heme/química , Metaloproteínas/química , Metamioglobina/química , Peroxidase/química , Animais , Sítios de Ligação , Cristalografia por Raios X , Cavalos , Cinética , Klebsiella pneumoniae/enzimologia , Modelos Moleculares , Oxirredução , Peroxidase/metabolismo , Processos Fotoquímicos , Raios X
7.
Arch Biochem Biophys ; 681: 108267, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31953133

RESUMO

Human peroxidasin 1 (hsPxd01) is a homotrimeric multidomain heme peroxidase embedded in the extracellular matrix. It catalyses the two-electron oxidation of bromide by hydrogen peroxide to hypobromous acid which mediates the formation of essential sulfilimine cross-links between methionine and hydroxylysine residues in collagen IV. This confers critical structural reinforcement to the extracellular matrix. This study presents for the first time transient kinetic measurements of the reactivity of hsPxd01 compound I and compound II with the endogenous one-electron donors nitrite, ascorbate, urate, tyrosine and serotonin using the sequential stopped-flow technique. At pH 7.4 and 25 °C compound I of hsPxd01 is reduced to compound II with apparent second-order rate constants ranging from (1.9 ± 0.1) × 104 M-1 s-1 (urate) to (4.8 ± 0.1) × 105 M-1 s-1 (serotonin). Reduction of compound II to the ferric state occurs with apparent second-order rate constants ranging from (4.3 ± 0.2) × 102 M-1 s-1 (tyrosine) to (7.7 ± 0.1) × 103 M-1 s-1 (serotonin). The relatively fast rates of compound I reduction suggest that these reactions may take place in vivo and modulate bromide oxidation due to formation of compound II. Urate is shown to inhibit the bromination activity of hsPxd01, whereas nitrite stimulates the formation of hypobromous acid. The results are discussed with respect to known kinetic data of homologous mammalian peroxidases and to the physiological role of human peroxidasin 1.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Peroxidase/metabolismo , Elétrons , Células HEK293 , Halogenação , Humanos , Peróxido de Hidrogênio/metabolismo , Cinética , Nitritos/metabolismo , Oxirredução , Serotonina/metabolismo , Tirosina/metabolismo , Ácido Úrico/metabolismo , Peroxidasina
8.
Arch Biochem Biophys ; 689: 108443, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32485152

RESUMO

Human peroxidasin 1 (PXDN) is a homotrimeric multidomain heme peroxidase and essential for tissue development and architecture. It has a biosynthetic function and catalyses the hypobromous acid-mediated formation of specific covalent sulfilimine (SN) bonds, which cross-link type IV collagen chains in basement membranes. Currently, it is unknown whether and which domain(s) [i.e. leucine-rich repeat domain (LRR), immunoglobulin domains, peroxidase domain, von Willebrand factor type C domain] of PXDN interact with the polymeric networks of the extracellular matrix (ECM), and how these interactions integrate and regulate the enzyme's cross-linking activity, without imparting oxidative damage to the ECM. In this study, we probed the interactions of four PXDN constructs with different domain compositions with components of a basement membrane extract by immunoprecipitation. Strong binding of the LRR-containing construct was detected with the major ECM protein laminin. Analysis of these interactions by surface plasmon resonance spectroscopy revealed similar kinetics and affinities of binding of the LRR-containing construct to human and murine laminin-111, with calculated dissociation constants of 1.0 and 1.5 µM, respectively. The findings are discussed with respect to the recently published in-solution structures of the PXDN constructs and the proposed biological role of this peroxidase.


Assuntos
Membrana Basal/metabolismo , Laminina/metabolismo , Peroxidases/metabolismo , Animais , Células HEK293 , Humanos , Leucina/química , Leucina/metabolismo , Camundongos , Peroxidases/química , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/metabolismo
9.
J Biol Chem ; 293(38): 14823-14838, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30072383

RESUMO

Dye-decolorizing peroxidases (DyPs) represent the most recently classified hydrogen peroxide-dependent heme peroxidase family. Although widely distributed with more than 5000 annotated genes and hailed for their biotechnological potential, detailed biochemical characterization of their reaction mechanism remains limited. Here, we present the high-resolution crystal structures of WT B-class DyP from the pathogenic bacterium Klebsiella pneumoniae (KpDyP) (1.6 Å) and the variants D143A (1.3 Å), R232A (1.9 Å), and D143A/R232A (1.1 Å). We demonstrate the impact of elimination of the DyP-typical, distal residues Asp-143 and Arg-232 on (i) the spectral and redox properties, (ii) the kinetics of heterolytic cleavage of hydrogen peroxide, (iii) the formation of the low-spin cyanide complex, and (iv) the stability and reactivity of an oxoiron(IV)porphyrin π-cation radical (Compound I). Structural and functional studies reveal that the distal aspartate is responsible for deprotonation of H2O2 and for the poor oxidation capacity of Compound I. Elimination of the distal arginine promotes a collapse of the distal heme cavity, including blocking of one access channel and a conformational change of the catalytic aspartate. We also provide evidence of formation of an oxoiron(IV)-type Compound II in KpDyP with absorbance maxima at 418, 527, and 553 nm. In summary, a reaction mechanism of the peroxidase cycle of B-class DyPs is proposed. Our observations challenge the idea that peroxidase activity toward conventional aromatic substrates is related to the physiological roles of B-class DyPs.


Assuntos
Arginina/metabolismo , Ácido Aspártico/metabolismo , Corantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidases/metabolismo , Substituição de Aminoácidos , Catálise , Domínio Catalítico , Dicroísmo Circular , Cor , Cristalografia por Raios X , Dimerização , Estabilidade Enzimática , Heme/química , Concentração de Íons de Hidrogênio , Hidrólise , Klebsiella pneumoniae/metabolismo , Peroxidases/química , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrofotometria Ultravioleta
10.
Biochemistry ; 57(13): 2044-2057, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29536725

RESUMO

Coproheme decarboxylases (ChdC) catalyze the hydrogen peroxide-mediated conversion of coproheme to heme b. This work compares the structure and function of wild-type (WT) coproheme decarboxylase from Listeria monocytogenes and its M149A, Q187A, and M149A/Q187A mutants. The UV-vis, resonance Raman, and electron paramagnetic resonance spectroscopies clearly show that the ferric form of the WT protein is a pentacoordinate quantum mechanically mixed-spin state, which is very unusual in biological systems. Exchange of the Met149 residue to Ala dramatically alters the heme coordination, which becomes a 6-coordinate low spin species with the amide nitrogen atom of the Q187 residue bound to the heme iron. The interaction between M149 and propionyl 2 is found to play an important role in keeping the Q187 residue correctly positioned for closure of the distal cavity. This is confirmed by the observation that in the M149A variant two CO conformers are present corresponding to open (A0) and closed (A1) conformations. The CO of the latter species, the only conformer observed in the WT protein, is H-bonded to Q187. In the absence of the Q187 residue or in the adducts of all the heme b forms of ChdC investigated herein (containing vinyls in positions 2 and 4), only the A0 conformer has been found. Moreover, M149 is shown to be involved in the formation of a covalent bond with a vinyl substituent of heme b at excess of hydrogen peroxide.


Assuntos
Proteínas de Bactérias/química , Carboxiliases/química , Listeria monocytogenes/enzimologia , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Carboxiliases/genética , Domínio Catalítico , Listeria monocytogenes/genética , Relação Estrutura-Atividade
11.
J Biol Chem ; 292(20): 8244-8261, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28348079

RESUMO

Myeloperoxidase (MPO) is synthesized by neutrophil and monocyte precursor cells and contributes to host defense by mediating microbial killing. Although several steps in MPO biosynthesis and processing have been elucidated, many questions remained, such as the structure-function relationship of monomeric unprocessed proMPO versus the mature dimeric MPO and the functional role of the propeptide. Here we have presented the first and high resolution (at 1.25 Å) crystal structure of proMPO and its solution structure obtained by small-angle X-ray scattering. Promyeloperoxidase hosts five occupied glycosylation sites and six intrachain cystine bridges with Cys-158 of the very flexible N-terminal propeptide being covalently linked to Cys-319 and thereby hindering homodimerization. Furthermore, the structure revealed (i) the binding site of proMPO-processing proconvertase, (ii) the structural motif for subsequent cleavage to the heavy and light chains of mature MPO protomers, and (iii) three covalent bonds between heme and the protein. Studies of the mutants C158A, C319A, and C158A/C319A demonstrated significant differences from the wild-type protein, including diminished enzymatic activity and prevention of export to the Golgi due to prolonged association with the chaperone calnexin. These structural and functional findings provide novel insights into MPO biosynthesis and processing.


Assuntos
Precursores Enzimáticos , Peroxidase , Substituição de Aminoácidos , Calnexina/química , Calnexina/genética , Calnexina/metabolismo , Cristalografia por Raios X , Ativação Enzimática/fisiologia , Precursores Enzimáticos/biossíntese , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Complexo de Golgi/enzimologia , Complexo de Golgi/genética , Células HEK293 , Humanos , Células K562 , Mutação de Sentido Incorreto , Peroxidase/biossíntese , Peroxidase/química , Peroxidase/genética , Domínios Proteicos
12.
J Biol Chem ; 292(11): 4583-4592, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28154175

RESUMO

Human peroxidasin 1 is a homotrimeric multidomain peroxidase that is secreted to the extracellular matrix. The heme enzyme was shown to release hypobromous acid that mediates the formation of specific covalent sulfilimine bonds to reinforce collagen IV in basement membranes. Maturation by proteolytic cleavage is known to activate the enzyme. Here, we present the first multimixing stopped-flow study on a fully functional truncated variant of human peroxidasin 1 comprising four immunoglobulin-like domains and the catalytically active peroxidase domain. The kinetic data unravel the so far unknown substrate specificity and mechanism of halide oxidation of human peroxidasin 1. The heme enzyme is shown to follow the halogenation cycle that is induced by the rapid H2O2-mediated oxidation of the ferric enzyme to the redox intermediate compound I. We demonstrate that chloride cannot act as a two-electron donor of compound I, whereas thiocyanate, iodide, and bromide efficiently restore the ferric resting state. We present all relevant apparent bimolecular rate constants, the spectral signatures of the redox intermediates, and the standard reduction potential of the Fe(III)/Fe(II) couple, and we demonstrate that the prosthetic heme group is post-translationally modified and cross-linked with the protein. These structural features provide the basis of human peroxidasin 1 to act as an effective generator of hypobromous acid, which mediates the formation of covalent cross-links in collagen IV.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Peroxidase/metabolismo , Brometos/metabolismo , Domínio Catalítico , Cloretos/metabolismo , Colágeno Tipo IV/metabolismo , Proteínas da Matriz Extracelular/química , Compostos Férricos/metabolismo , Halogenação , Humanos , Peróxido de Hidrogênio/metabolismo , Iodetos/metabolismo , Cinética , Oxirredução , Peroxidase/química , Domínios Proteicos , Especificidade por Substrato , Tiocianatos/metabolismo , Peroxidasina
13.
Arch Biochem Biophys ; 640: 27-36, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29331688

RESUMO

Coproheme decarboxylases (ChdCs) are enzymes responsible for the catalysis of the terminal step in the coproporphyrin-dependent heme biosynthesis pathway. Phylogenetic analyses confirm that the gene encoding for ChdCs is widespread throughout the bacterial world. It is found in monoderm bacteria (Firmicutes, Actinobacteria), diderm bacteria (e. g. Nitrospirae) and also in Archaea. In order to test phylogenetic prediction ChdC representatives from all clades were expressed and examined for their coproheme decarboxylase activity. Based on available biochemical data and phylogenetic analyses a sequence motif (-Y-P-M/F-X-K/R-) is defined for ChdCs. We show for the first time that in diderm bacteria an active coproheme decarboxylase is present and that the archaeal ChdC homolog from Sulfolobus solfataricus is inactive and its physiological role remains elusive. This shows the limitation of phylogenetic prediction of an enzymatic activity, since the identified sequence motif is equally conserved across all previously defined clades.


Assuntos
Carboxiliases/química , Carboxiliases/classificação , Coproporfirinas/química , Sequência de Aminoácidos , Carboxiliases/genética , Catálise , Filogenia , Sulfolobus solfataricus/enzimologia
14.
Arch Biochem Biophys ; 643: 14-23, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29462588

RESUMO

Four heme peroxidase superfamilies arose independently in evolution. Only in the peroxidase-cyclooxygenase superfamily the prosthetic group is posttranslationally modified (PTM). As a consequence these peroxidases can form one, two or three covalent bonds between heme substituents and the protein. This may include ester bonds between heme 1- and 5-methyl groups and glutamate and aspartate residues as well as a sulfonium ion link between the heme 2-vinyl substituent and a methionine. Here the phylogeny and physiological roles of representatives of this superfamily, their occurrence in all kingdoms of life, the relevant sequence motifs for definite identification and the available crystal structures are presented. We demonstrate the autocatalytic posttranslational maturation process and the impact of the covalent links on spectral and redox properties as well as on catalysis, including Compound I formation and reduction by one- and two-electron donors. Finally, we discuss the evolutionary advantage of these PTMs with respect to the proposed physiological functions of the metalloenzymes that range from antimicrobial defence in innate immunity to extracellular matrix formation and hormone biosynthesis.


Assuntos
Biocatálise , Heme/metabolismo , Peroxidases/química , Peroxidases/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Sequência Conservada , Humanos
15.
Biochemistry ; 56(34): 4525-4538, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28762722

RESUMO

The existence of covalent heme to protein bonds is the most striking structural feature of mammalian peroxidases, including myeloperoxidase and lactoperoxidase (LPO). These autocatalytic posttranslational modifications (PTMs) were shown to strongly influence the biophysical and biochemical properties of these oxidoreductases. Recently, we reported the occurrence of stable LPO-like counterparts with two heme to protein ester linkages in bacteria. This study focuses on the model wild-type peroxidase from the cyanobacterium Lyngbya sp. PCC 8106 (LspPOX) and the mutants D109A, E238A, and D109A/E238A that could be recombinantly produced as apoproteins in Escherichia coli, fully reconstituted to the respective heme b proteins, and posttranslationally modified by hydrogen peroxide. This for the first time allows not only a direct comparison of the catalytic properties of the heme b and PTM forms but also a study of the impact of D109 and E238 on PTM and catalysis, including Compound I formation and the two-electron reduction of Compound I by bromide, iodide, and thiocyanate. It is demonstrated that both heme to protein ester bonds can form independently and that elimination of E238, in contrast to exchange of D109, does not cause significant structural rearrangements or changes in the catalytic properties neither in heme b nor in the PTM form. The obtained findings are discussed with respect to published structural and functional data of human peroxidases.


Assuntos
Proteínas de Bactérias/metabolismo , Cianobactérias/enzimologia , Heme/metabolismo , Peroxidase/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Catálise , Heme/química , Heme/genética , Ligantes , Peroxidase/química , Peroxidase/genética
17.
Biochemistry ; 55(38): 5398-412, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27599156

RESUMO

Recently, a novel pathway for heme b biosynthesis in Gram-positive bacteria has been proposed. The final poorly understood step is catalyzed by an enzyme called HemQ and includes two decarboxylation reactions leading from coproheme to heme b. Coproheme has been suggested to act as both substrate and redox active cofactor in this reaction. In the study presented here, we focus on HemQs from Listeria monocytogenes (LmHemQ) and Staphylococcus aureus (SaHemQ) recombinantly produced as apoproteins in Escherichia coli. We demonstrate the rapid and two-phase uptake of coproheme by both apo forms and the significant differences in thermal stability of the apo forms, coproheme-HemQ and heme b-HemQ. Reduction of ferric high-spin coproheme-HemQ to the ferrous form is shown to be enthalpically favored but entropically disfavored with standard reduction potentials of -205 ± 3 mV for LmHemQ and -207 ± 3 mV for SaHemQ versus the standard hydrogen electrode at pH 7.0. Redox thermodynamics suggests the presence of a pronounced H-bonding network and restricted solvent mobility in the heme cavity. Binding of cyanide to the sixth coproheme position is monophasic but relatively slow (∼1 × 10(4) M(-1) s(-1)). On the basis of the available structures of apo-HemQ and modeling of both loaded forms, molecular dynamics simulation allowed analysis of the interaction of coproheme and heme b with the protein as well as the role of the flexibility at the proximal heme cavity and the substrate access channel for coproheme binding and heme b release. Obtained data are discussed with respect to the proposed function of HemQ in monoderm bacteria.


Assuntos
Heme/química , Simulação de Dinâmica Molecular , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Ligantes , Filogenia , Espectrofotometria Ultravioleta
18.
Biochim Biophys Acta ; 1854(10 Pt A): 1536-44, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25748881

RESUMO

Immunoglobulins M (IgMs) are gaining increasing attention as biopharmaceuticals since their multivalent mode of binding can give rise to high avidity. Furthermore, IgMs are potent activators of the complement system. However, they are frequently difficult to express recombinantly and can suffer from low conformational stability. Here, the broadly neutralizing anti-HIV-1 antibody 2G12 was class-switched to IgM and then further engineered by introduction of 17 germline residues. The impact of these changes on the structure and conformational stability of the antibody was then assessed using a range of biophysical techniques. We also investigated the effects of the class switch and germline substitutions on the ligand-binding properties of 2G12 and its capacity for HIV-1 neutralization. Our results demonstrate that the introduced germline residues improve the conformational and thermal stability of 2G12-IgM without altering its overall shape and ligand-binding properties. Interestingly, the engineered protein was found to exhibit much lower neutralization potency than its wild-type counterpart, indicating that potent antigen recognition is not solely responsible for IgM-mediated HIV-1 inactivation.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Anti-HIV/química , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Imunoglobulina M/química , Substituição de Aminoácidos , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Sequência de Bases , Células CHO , Cricetulus , Expressão Gênica , Células HEK293 , Anticorpos Anti-HIV/biossíntese , Anticorpos Anti-HIV/imunologia , Anticorpos Anti-HIV/farmacologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/crescimento & desenvolvimento , Humanos , Switching de Imunoglobulina/genética , Imunoglobulina M/biossíntese , Imunoglobulina M/imunologia , Imunoglobulina M/farmacologia , Dados de Sequência Molecular , Mutação , Testes de Neutralização , Conformação Proteica , Engenharia de Proteínas , Estabilidade Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Alinhamento de Sequência , Relação Estrutura-Atividade
19.
Mol Microbiol ; 96(5): 1053-68, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25732258

RESUMO

It is demonstrated that cyanobacteria (both azotrophic and non-azotrophic) contain heme b oxidoreductases that can convert chlorite to chloride and molecular oxygen (incorrectly denominated chlorite 'dismutase', Cld). Beside the water-splitting manganese complex of photosystem II, this metalloenzyme is the second known enzyme that catalyses the formation of a covalent oxygen-oxygen bond. All cyanobacterial Clds have a truncated N-terminus and are dimeric (i.e. clade 2) proteins. As model protein, Cld from Cyanothece sp. PCC7425 (CCld) was recombinantly produced in Escherichia coli and shown to efficiently degrade chlorite with an activity optimum at pH 5.0 [kcat 1144 ± 23.8 s(-1), KM 162 ± 10.0 µM, catalytic efficiency (7.1 ± 0.6) × 10(6) M(-1) s(-1)]. The resting ferric high-spin axially symmetric heme enzyme has a standard reduction potential of the Fe(III)/Fe(II) couple of -126 ± 1.9 mV at pH 7.0. Cyanide mediates the formation of a low-spin complex with k(on) = (1.6 ± 0.1) × 10(5) M(-1) s(-1) and k(off) = 1.4 ± 2.9 s(-1) (KD ∼ 8.6 µM). Both, thermal and chemical unfolding follows a non-two-state unfolding pathway with the first transition being related to the release of the prosthetic group. The obtained data are discussed with respect to known structure-function relationships of Clds. We ask for the physiological substrate and putative function of these O2 -producing proteins in (nitrogen-fixing) cyanobacteria.


Assuntos
Cloretos/metabolismo , Cyanothece/enzimologia , Cyanothece/genética , Cyanothece/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Biocatálise , Cianetos/metabolismo , Escherichia coli/genética , Heme , Cinética , Modelos Moleculares , Oxirredutases/isolamento & purificação , Oxigênio/metabolismo , Filogenia , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
20.
Biochemistry ; 54(35): 5425-38, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26290940

RESUMO

Recently, it was demonstrated that bifunctional catalase-peroxidases (KatGs) are found not only in archaea and bacteria but also in lower eukaryotes. Structural studies and preliminary biochemical data of the secreted KatG from the rice pathogen Magnaporthe grisea (MagKatG2) suggested both similar and novel features when compared to those of the prokaryotic counterparts studied so far. In this work, we demonstrate the role of the autocatalytically formed redox-active Trp140-Tyr273-Met299 adduct of MagKatG2 in (i) the maintenance of the active site architecture, (ii) the catalysis of hydrogen peroxide dismutation, and (iii) the protein stability by comparing wild-type MagKatG2 with the single mutants Trp140Phe, Tyr273Phe, and Met299Ala. The impact of disruption of the covalent bonds between the adduct residues on the spectral signatures and heme cavity architecture was small. By contrast, loss of its integrity converts bifunctional MagKatG2 to a monofunctional peroxidase of significantly reduced thermal stability. It increases the accessibility of ligands due to the increased flexibility of the KatG-typical large loop 1 (LL1), which contributes to the substrate access channel and anchors at the adduct Tyr. We discuss these data with respect to those known from prokaryotic KatGs and in addition present a high-resolution structure of an oxoiron compound of MagKatG2.


Assuntos
Catalase/metabolismo , Células Eucarióticas/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidase/metabolismo , Catalase/química , Catálise , Magnaporthe/metabolismo , Metionina/química , Metionina/metabolismo , Peroxidase/química , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato , Triptaminas/química , Triptaminas/metabolismo , Tirosina/química , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa