Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 18(9): 5482-5487, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30111115

RESUMO

Pristine graphene is known to be nonmagnetic due to its π-conjugated electron system. However, we find that localized magnetic moments can be generated by chemically attaching boron atoms to the graphene sheets. Such spin-polarized states are evidenced by the spin-split of the density of states (DOS) peaks near the Fermi level in scanning tunneling spectroscopy (STS). In the vicinity of several coadsorbed boron atoms, the Coulomb repulsion between multiple spins leads to antiferromagnetic coupling for the induced spin states in the graphene lattice, manifesting itself as an increment of spin-down state at specific regions. Experimental observations and interpretations are rationalized by extensive density functional theory (DFT) simulations.

2.
Nano Lett ; 17(8): 4929-4933, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28727436

RESUMO

The quantum efficiency or the rate of conversion of incident photon to free electron in photosynthesis is known to be extremely high. It has long been thought that the origin of this efficiency are molecular vibrations leading to a very fast separation of electrons and holes within the involved molecules. However, molecular vibrations are commonly in the range above 100 meV, which is too high for excitations in an ambient environment. Here, we analyze experimental spectra of single organic molecules on metal surfaces at ∼4 K, which often exhibit a pronounced dip. We show that measurements on iron(II) [tetra-(pentafluorophenyl)]porphyrin resolve this single dip at 4 K into a series of step-shaped inelastic excitations at 0.4 K. Via extensive spectral maps under applied magnetic fields and corresponding theoretical analysis we find that the dip is due to ultralow-energy vibrations of the molecular frame, typically in the range below 20 meV. The result indicates that ultralow energy vibrations in organic molecules are much more common than currently thought and may be all-pervasive for molecules above a certain size.

3.
Phys Rev Lett ; 114(12): 126601, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25860762

RESUMO

The site-dependent g factor of a single magnetic molecule, with intramolecular resolution, is demonstrated for the first time by low-temperature, high-magnetic-field scanning tunneling microscopy of dehydrogenated Mn-phthalocyanine molecules on Au(111). This is achieved by exploring the magnetic-field dependence of the extended Kondo effect at different atomic sites of the molecule. Importantly, an inhomogeneous distribution of the g factor inside a single molecule is revealed. Our results open up a new route to access local spin properties within a single molecule.

4.
Proc Natl Acad Sci U S A ; 108(3): 950-5, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-20798058

RESUMO

The fabrication of nano devices at surfaces makes conflicting demands of mobility for self-assembly (SA) and immobility for permanence. The solution proposed in earlier work from this laboratory involved pattern formation in physisorbed molecules by SA, followed by localized reaction to chemically imprint the pattern substantially unchanged, a procedure we termed molecular-scale imprinting (MSI). Here, as proof of generality we extended this procedure, previously applied to imprinting circles on Si(111)-7 × 7, to SA lines of 1-chloropentane (CP) on Si(100)-2 × 1. The physisorbed lines consisted of pairs of CP that grew perpendicular to the Si dimer rows, as shown by scanning tunneling microscopy and ab initio theory. Chemical reaction of these lines with the surface was triggered in separate experiments by three different modes of energization: heat, electrons, or light. In all cases the CP molecules underwent MSI with a Si atom beneath so that the physisorbed lines of CP pairs were imprinted as chemisorbed lines of Cl pairs.


Assuntos
Físico-Química/métodos , Elétrons , Temperatura Alta , Luz , Nanotecnologia/métodos , Pentanos/química , Semicondutores , Silício/química
5.
Nano Lett ; 13(2): 685-90, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23330602

RESUMO

Silicene, a two-dimensional (2D) honeycomb structure similar to graphene, has been successfully fabricated on an Ir(111) substrate. It is characterized as a (√7×√7) superstructure with respect to the substrate lattice, as revealed by low energy electron diffraction and scanning tunneling microscopy. Such a superstructure coincides with the (√3×√3) superlattice of silicene. First-principles calculations confirm that this is a (√3×√3)silicene/(√7×√7)Ir(111) configuration and that it has a buckled conformation. Importantly, the calculated electron localization function shows that the silicon adlayer on the Ir(111) substrate has 2D continuity. This work provides a method to fabricate high-quality silicene and an explanation for the formation of the buckled silicene sheet.

6.
Proc Natl Acad Sci U S A ; 107(6): 2391-6, 2010 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-20133773

RESUMO

Oxygen vacancies on metal oxide surfaces have long been thought to play a key role in the surface chemistry. Such processes have been directly visualized in the case of the model photocatalyst surface TiO(2)(110) in reactions with water and molecular oxygen. These vacancies have been assumed to be neutral in calculations of the surface properties. However, by comparing experimental and simulated scanning tunneling microscopy images and spectra, we show that oxygen vacancies act as trapping centers and are negatively charged. We demonstrate that charging the defect significantly affects the reactivity by following the reaction of molecular oxygen with surface hydroxyl formed by water dissociation at the vacancies. Calculations with electronically charged hydroxyl favor a condensation reaction forming water and surface oxygen adatoms, in line with experimental observations. This contrasts with simulations using neutral hydroxyl where hydrogen peroxide is found to be the most stable product.


Assuntos
Elétrons , Modelos Químicos , Oxigênio/química , Titânio/química , Algoritmos , Simulação por Computador , Radical Hidroxila/química , Microscopia de Tunelamento , Modelos Moleculares , Propriedades de Superfície , Água/química
7.
Nano Lett ; 12(3): 1229-34, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22375560

RESUMO

A key requirement for the future applicability of molecular electronics devices is a resilience of their properties to mechanical deformation. At present, however, there is no fundamental understanding of the origins of mechanical properties of molecular films. Here we use quinacridone, which possesses flexible carbon side chains, as a model molecular system to address this issue. Eight molecular configurations with different molecular coverage are identified by scanning tunneling microscopy. Theoretical calculations reveal quantitatively the roles of different molecule-molecule and molecule-substrate interactions and predict the observed sequence of configurations. Remarkably, we find that a single Young's modulus applies for all configurations, the magnitude of which is controlled by side chain length, suggesting a versatile avenue for tuning not only the physical and chemical properties of molecular films but also their elastic properties.


Assuntos
Carbono/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Modelos Químicos , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Simulação por Computador , Cristalização/métodos , Módulo de Elasticidade , Substâncias Macromoleculares/química , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície , Resistência à Tração
8.
J Comput Chem ; 33(19): 1623-31, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22549464

RESUMO

In this work, we have computationally modeled the adsorption of 1,3-diiodobenzene (meta-diiodobenzene or m-DIB) on Cu(1 1 0) by means of density functional theory including van der Waals interaction using Grimme's method. We have compared the adsorption energies and structures of 23 possible configurations of the physisorbed molecule. Furthermore, we have simulated STM images for the four most stable configurations using the Tersoff-Hamann approach at different bias voltages. We find that all the adsorption orientations have comparable energy, and we discuss the relative probabilities of experimental observation. We find that the adsorption induces small distortions in the molecular structure of the adsorbate and in some cases an adsorption-induced symmetry breakdown occurs. We also find evidence that the most stable arrangement is actually a bistable system with interesting symmetry properties.


Assuntos
Cobre/química , Iodobenzenos/química , Adsorção , Teoria Quântica , Propriedades de Superfície
9.
Nano Lett ; 11(10): 4113-7, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21905693

RESUMO

If a molecule controls the length of some other moiety, it can be termed a "molecular caliper". Here we image individual molecular calipers of this type by scanning tunneling microscopy. These consist of linear polymers of p-diiodobenzene, (pDIB)n, of varying length, 0.7-2.9 nm, physisorbed on Cu(110) at 4.6 K. Through electron-induced reaction these chemically imprint their terminal I-atoms on the copper, 0.7 nm further apart than their initial separations. The physisorbed monomer or polymer, therefore, constitutes a molecular-caliper with variable terminal I..I separation. The localized nature of the I-atom reaction at the copper surface relative to the parent molecule, constitutes a novel finding reported here. It ensures that the separation of the I-atoms in the physisorbed molecular caliper correlates with their subsequent separation when chemisorbed at the surface.

10.
J Am Chem Soc ; 133(41): 16560-5, 2011 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-21879758

RESUMO

Adsorbates on metals, but not previously on semiconductors, have been observed to display long-range repulsive interactions. On metals, due to efficient dissipation, the repulsions are weak, typically on the order of 5 meV at 10 Å. On the 7×7 reconstruction of the Si(111) surface, charge transport through the surface has been demonstrated by others using charge injection by STM tips. Here we show that for both physisorbed brominated molecules, and for chemisorbed Br-atoms, induced charge-transfer in the Si(111)-7×7 surface can lead to a strong repulsive interaction between adsorbates, calculated as 200 meV at 13.4 Å. This large repulsive interaction must be channeled through the surface since it causes widely spaced "one-per-corner-hole" patterns of physisorption (three cases--directly observed here) and subsequent chemisorption (four cases observed). The patterns were observed by ultrahigh vacuum scanning tunneling microscopy for four different brominated hydrocarbon adsorbates; 1,2-dibromoethane, 1-bromopropane, 1-bromopentane, and bromobenzene, deposited individually on the surface. In every case, adsorbates were overwhelmingly more likely to be found singly than multiply adjacent to a corner-hole, constituting a distinctive pattern having a probability p = 7 × 10(-5) compared to a random distribution.


Assuntos
Silício/química , Adsorção , Bromobenzenos/química , Dibrometo de Etileno/química , Hidrocarbonetos Bromados/química , Tamanho da Partícula , Teoria Quântica , Propriedades de Superfície
11.
Nature ; 435(7042): 658-61, 2005 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-15931218

RESUMO

Electrical transport through molecules has been much studied since it was proposed that individual molecules might behave like basic electronic devices, and intriguing single-molecule electronic effects have been demonstrated. But because transport properties are sensitive to structural variations on the atomic scale, further progress calls for detailed knowledge of how the functional properties of molecules depend on structural features. The characterization of two-terminal structures has become increasingly robust and reproducible, and for some systems detailed structural characterization of molecules on electrodes or insulators is available. Here we present scanning tunnelling microscopy observations and classical electrostatic and quantum mechanical modelling results that show that the electrostatic field emanating from a fixed point charge regulates the conductivity of nearby substrate-bound molecules. We find that the onset of molecular conduction is shifted by changing the charge state of a silicon surface atom, or by varying the spatial relationship between the molecule and that charged centre. Because the shifting results in conductivity changes of substantial magnitude, these effects are easily observed at room temperature.

12.
J Am Chem Soc ; 131(10): 3639-43, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-19243166

RESUMO

Molecule-based functional devices on surfaces may take advantage of bistable molecular switches. The conformational dynamics and efficiency of switches are radically different on surfaces compared to the liquid phase. We present a design of molecular layers which enables bistable switching on a surface and, for the first time, demonstrate control of a single switch in a dense and ordered array at the spatial limit. Up and down motion of a central Sn ion through the frame of a phthalocyanine molecule is achieved via resonant electron or hole injection into molecular orbitals.

13.
J Am Chem Soc ; 131(30): 10400-2, 2009 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-19594153

RESUMO

Whereas all 230 three-dimensional space groups occur in organic crystals, out of only 17 plane groups some highly symmetric ones such as p31m have not yet been observed in two-dimensional (2D) crystals of organic molecules. Here a kagome network with p31m symmetry is reported for cobalt phthalocyanine on Cu(111). This unusual structure results from substrate-induced reduction of molecular symmetry and substrate-mediated interaction via quantum interference of surface electrons. These interactions provide additional control over the symmetry of 2D crystals of phthalocyanines and lead to a variety of other symmetries in self-assembled arrays.

14.
J Phys Condens Matter ; 21(19): 195301, 2009 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21825475

RESUMO

We report a theoretical study of hydroxyl vacancies in aluminosilicate and aluminogermanate single-walled metal-oxide nanotubes. Defects are introduced on both sides of the tube walls and lead to occupied and empty states in the band gap which are highly localized both in energy and in real space. Different magnetization states are found depending on both the chemical composition and the specific side with respect to the tube cavity. The defect-induced perturbations to the pristine electronic structure are related to the electrostatic polarization across the tube walls and the ensuing change in Lewis acid-base reactivity. A general approach towards a quantitative evaluation of both the polarization across the tube walls and the tube excluded volume is also proposed and discussed on an electrostatic basis.

15.
Chem Sci ; 10(11): 3186-3195, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30996900

RESUMO

The silver-nucleoside complex [Ag(i)-(N3-cytidine)2], 1, self-assembles to form a supramolecular metal-mediated base-pair array highly analogous to those seen in metallo-DNA. A combination of complementary hydrogen-bonding, hydrophobic and argentophilic interactions drive the formation of a double-helix with a continuous silver core. Electrical measurements on 1 show that despite having Ag···Ag distances within <5% of the metallic radii, the material is electrically insulating. This is due to the electronic structure which features a filled valence band, an empty conduction band dominated by the ligand, and a band gap of 2.5 eV. Hence, as-prepared, such Ag(i)-DNA systems should not be considered molecular nanowires but, at best, proto-wires. The structural features seen in 1 are essentially retained in the corresponding organogel which exhibits thixotropic self-healing that can be attributed to the reversible nature of the intermolecular interactions. Photo-reduced samples of the gel exhibit luminescence confirming that these poly-cytidine sequences appropriately pre-configure silver ions for the formation of quantum-confined metal clusters in line with contemporary views on DNA-templated clusters. Microscopy data reveals the resulting metal cluster/particles are approximately spherical and crystalline with lattice spacing (111) similar to bulk Ag.

16.
Nat Commun ; 10(1): 3599, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399599

RESUMO

Controlling electronic transport through a single-molecule junction is crucial for molecular electronics or spintronics. In magnetic molecular devices, the spin degree-of-freedom can be used to this end since the magnetic properties of the magnetic ion centers fundamentally impact the transport through the molecules. Here we demonstrate that the electron pathway in a single-molecule device can be selected between two molecular orbitals by varying a magnetic field, giving rise to a tunable anisotropic magnetoresistance up to 93%. The unique tunability of the electron pathways is due to the magnetic reorientation of the transition metal center, resulting in a re-hybridization of molecular orbitals. We obtain the tunneling electron pathways by Kondo effect, which manifests either as a peak or a dip line shape. The energy changes of these spin-reorientations are remarkably low and less than one millielectronvolt. The large tunable anisotropic magnetoresistance could be used to control electronic transport in molecular spintronics.

17.
Chem Commun (Camb) ; 54(44): 5508-5517, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29726883

RESUMO

Scanning probe instruments in conjunction with a very low temperature environment have revolutionized the ability of building, functionalizing, and analysing two dimensional interfaces in the last twenty years. In addition, the availability of fast, reliable, and increasingly sophisticated methods to simulate the structure and dynamics of these interfaces allow us to capture even very small effects at the atomic and molecular level. In this review we shall focus largely on metal surfaces and organic molecular compounds and show that building systems from the bottom up and controlling the physical properties of such systems is no longer within the realm of the desirable, but has become day to day reality in our best laboratories.

18.
J Phys Chem B ; 110(43): 21394-8, 2006 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-17064083

RESUMO

A vicinal Au(11 12 12) surface, naturally patterned into a rectangular superlattice, has been used as a template to prepare C60 nanostructures with long-range order and uniform size. At a coverage of 0.1 monolayer and at room temperature, a two-dimensional long-range ordered superlattice of molecular nanochains is achieved, which perfectly replicates the periodicity of the template surface. The fullerene nanochains are found to be located exclusively on the face-centered cubic stacking domains at the lower step edges. Our experiments demonstrate that highly periodic molecular nanochains can be fabricated through a site-selective anchoring method.

19.
Nat Chem ; 8(4): 326-30, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27001727

RESUMO

In biomineralization, inorganic materials are formed with remarkable control of the shape and morphology. Chirality, as present in the biomolecular world, is therefore also common for biominerals. Biomacromolecules, like proteins and polysaccharides, are in direct contact with the mineral phase and act as modifiers during nucleation and crystal growth. Owing to their homochirality--they exist only as one of two possible mirror-symmetric isomers--their handedness is often transferred into the macroscopic shape of the biomineral crystals, but the way in which handedness is transmitted into achiral materials is not yet understood at the atomic level. By using the submolecular resolution capability of scanning tunnelling microscopy, supported by photoelectron diffraction and density functional theory, we show how the chiral 'buckybowl' hemibuckminsterfullerene arranges copper surface atoms in its vicinity into a chiral morphology. We anticipate that such new insight will find its way into materials synthesis techniques.

20.
Sci Rep ; 3: 1210, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383378

RESUMO

The reversible control of a single spin of an atom or a molecule is of great interest in Kondo physics and a potential application in spin based electronics. Here we demonstrate that the Kondo resonance of manganese phthalocyanine molecules on a Au(111) substrate have been reversibly switched off and on via a robust route through attachment and detachment of single hydrogen atom to the magnetic core of the molecule. As further revealed by density functional theory calculations, even though the total number of electrons of the Mn ion remains almost the same in the process, gaining one single hydrogen atom leads to redistribution of charges within 3d orbitals with a reduction of the molecular spin state from S = 3/2 to S = 1 that directly contributes to the Kondo resonance disappearance. This process is reversed by a local voltage pulse or thermal annealing to desorb the hydrogen atom.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa