Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Pharmacol Exp Ther ; 384(3): 331-342, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36241203

RESUMO

Vascular endothelial growth factor (VEGF) and angiopoietin (ANG)-2 have complementary roles in angiogenesis and promote an immunosuppressive tumor microenvironment. It is anticipated that the combination of VEGF and ANG2 blockade could provide superior activity to the blockade of either pathway alone and that the addition of VEGF/ANG2 inhibition to an anti-programmed cell death protein-1 (PD-1) antibody could change the tumor microenvironment to support T-cell-mediated tumor cytotoxicity. Here, we describe the pharmacologic and antitumor activity of BI 836880, a humanized bispecific nanobody comprising two single-variable domains blocking VEGF and ANG2, and an additional module for half-life extension in vivo. BI 836880 demonstrated high affinity and selectivity for human VEGF-A and ANG2, resulting in inhibition of the downstream signaling of VEGF/ANG2 and a decrease in endothelial cell proliferation and survival. In vivo, BI 836880 exhibited significant antitumor activity in all patient-derived xenograft models tested, showing significantly greater tumor growth inhibition (TGI) than bevacizumab (VEGF inhibition) and AMG386 (ANG1/2 inhibition) in a range of models. In a Lewis lung carcinoma syngeneic tumor model, the combination of PD-1 inhibition with VEGF inhibition showed superior efficacy versus the blockade of either pathway alone. TGI was further increased with the addition of ANG2 inhibition to VEGF/PD-1 blockade. VEGF/ANG2 inhibition had a strong antiangiogenic effect. Our data suggest that the blockade of VEGF and ANG2 with BI 836880 may offer improved antitumor activity versus the blockade of either pathway alone and that combining VEGF/ANG2 inhibition with PD-1 blockade can further enhance antitumor effects. SIGNIFICANCE STATEMENT: Vascular endothelial growth factor (VEGF) and angiopoietin (ANG)-2 play key roles in angiogenesis and have an immunosuppressive effect in the tumor microenvironment. This study shows that BI 836880, a bispecific nanobody targeting VEGF and ANG2, demonstrates substantial antitumor activity in preclinical models. Combining VEGF/ANG2 inhibition with the blockade of the PD-1 pathway can further improve antitumor activity.


Assuntos
Neoplasias , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiopoietina-2/metabolismo , Receptor de Morte Celular Programada 1 , Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Inibidores da Angiogênese , Neoplasias/tratamento farmacológico , Morte Celular , Angiopoietina-1 , Microambiente Tumoral
2.
Biotechnol Bioeng ; 112(12): 2505-15, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26058896

RESUMO

Human cytomegalovirus (HCMV) causes significant disease worldwide. Multiple HCMV vaccines have been tested in man but only partial protection has been achieved. The HCMV gH/gL/UL128/UL130/UL131A complex (Pentamer) is the main target of neutralizing antibodies in HCMV seropositive individuals and raises high titers of neutralizing antibodies in small animals and non-human primates (NHP). Thus, Pentamer is a promising candidate for an effective HCMV vaccine. Development of a Pentamer-based subunit vaccine requires expression of high amounts of a functional and stable complex. We describe here the development of a mammalian expression system for large scale Pentamer production. Several approaches comprising three different CHO-originated cell lines and multiple vector as well as selection strategies were tested. Stable cell pools expressed the HCMV Pentamer at a titer of approximately 60 mg/L at laboratory scale. A FACS-based single cell sorting approach allowed selection of a highly expressing clone producing Pentamer at the level of approximately 400 mg/L in a laboratory scale fed-batch culture. Expression in a 50 L bioreactor led to the production of HCMV Pentamer at comparable titers indicating the feasibility of further scale-up for manufacturing at commercial scale. The CHO-produced HCMV Pentamer bound to a panel of human neutralizing antibodies and raised potently neutralizing immune response in mice. Thus, we have generated an expression system for the large scale production of functional HCMV Pentamer at high titers suitable for future subunit vaccine production.


Assuntos
Células CHO , Vacinas contra Citomegalovirus/imunologia , Expressão Gênica , Proteínas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Cricetulus , Citomegalovirus/genética , Vacinas contra Citomegalovirus/administração & dosagem , Vacinas contra Citomegalovirus/genética , Vacinas contra Citomegalovirus/metabolismo , Camundongos , Multimerização Proteica , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/metabolismo , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
3.
J Pharm Biomed Anal ; 245: 116141, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38678856

RESUMO

Potency assays are essential for the development and quality control of biopharmaceutical drugs, but they are often a time limiting factor due to manual handling steps and consequently low analytical throughput. On the other hand, automation of potency assays can be challenging due to their complexity and the use of biological materials. ELISA (enzyme-linked immunosorbent assay) is widely used for potency determination and is a good candidate for automation as all ELISA types depend on the same basic steps: coating, blocking, sample incubation, detection, and signal measurement. Nevertheless, ELISA for relative potency measurements still require drug-specific development and assay validation thereby complicating automation efforts. To simplify potency testing by ELISA, we first developed a manual protocol generally applicable to different drugs and then adapted this protocol for automated measurements. We identified unexpected critical parameters which had to be adapted to transfer the manual ELISA to an automated liquid handling system and we demonstrated that gravimetric sample dilution is unnecessary with the automated protocol. Both manual and automated protocols were validated and compared using multiple biotherapeutics. The automated protocol showed similar or higher precision and accuracy when compared to the manual method.


Assuntos
Ensaio de Imunoadsorção Enzimática , Ensaio de Imunoadsorção Enzimática/métodos , Automação , Fragmentos de Imunoglobulinas , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Reprodutibilidade dos Testes , Humanos , Automação Laboratorial/métodos , Controle de Qualidade
4.
Proc Natl Acad Sci U S A ; 106(52): 22299-304, 2009 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-20007781

RESUMO

NVP-BEZ235 is a dual PI3K/mTOR inhibitor currently in phase I clinical trials. We profiled this compound against a panel of breast tumor cell lines to identify the patient populations that would benefit from such treatment. In this setting, NVP-BEZ235 selectively induced cell death in cell lines presenting either HER2 amplification and/or PIK3CA mutation, but not in cell lines with PTEN loss of function or KRAS mutations, for which resistance could be attributed, in part to ERK pathway activity. An in depth analysis of death markers revealed that the cell death observed upon NVP-BEZ235 treatment could be recapitulated with other PI3K inhibitors and that this event is linked to active PARP cleavage indicative of an apoptotic process. Moreover, the effect seemed to be partly independent of the caspase-9 executioner and mitochondrial activated caspases, suggesting an alternate route for apoptosis induction by PI3K inhibitors. Overall, this study will provide guidance for patient stratification for forthcoming breast cancer phase II trials for NVP-BEZ235.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Genes erbB-2 , Imidazóis/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Quinolinas/farmacologia , Apoptose/genética , Apoptose/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caspase 9/metabolismo , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/fisiologia , Inibidores Enzimáticos/farmacologia , Feminino , Amplificação de Genes , Genes erbB-2/efeitos dos fármacos , Humanos , Mutação , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR
5.
Mol Cancer Ther ; 20(11): 2250-2261, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34482286

RESUMO

Despite some impressive clinical results with immune checkpoint inhibitors, the majority of patients with cancer do not respond to these agents, in part due to immunosuppressive mechanisms in the tumor microenvironment. High levels of adenosine in tumors can suppress immune cell function, and strategies to target the pathway involved in its production have emerged. CD73 is a key enzyme involved in adenosine production. This led us to identify a novel humanized antagonistic CD73 antibody, mAb19, with distinct binding properties. mAb19 potently inhibits the enzymatic activity of CD73 in vitro, resulting in an inhibition of adenosine formation and enhanced T-cell activation. We then investigated the therapeutic potential of combining CD73 antagonism with other immune modulatory and chemotherapeutic agents. Combination of mAb19 with a PD-1 inhibitor increased T-cell activation in vitro Interestingly, this effect could be further enhanced with an agonist of the adenosine receptor ADORA3. Adenosine levels were found to be elevated upon doxorubicin treatment in vivo, which could be blocked by CD73 inhibition. Combining CD73 antagonism with doxorubicin resulted in superior responses in vivo Furthermore, a retrospective analysis of rectal cancer patient samples demonstrated an upregulation of the adenosine pathway upon chemoradiation, providing further rationale for combining CD73 inhibition with chemotherapeutic agents.This study demonstrates the ability of a novel CD73 antibody to enhance T-cell function through the potent suppression of adenosine levels. In addition, the data highlight combination opportunities with standard of care therapies as well as with an ADORA3 receptor agonist to treat patients with solid tumors.


Assuntos
5'-Nucleotidase/antagonistas & inibidores , Adenosina/uso terapêutico , Terapia de Imunossupressão/métodos , Adenosina/farmacologia , Animais , Feminino , Humanos , Camundongos , Microambiente Tumoral
6.
Curr Biol ; 17(8): 711-6, 2007 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-17398095

RESUMO

The small GTPase Arf6 regulates endocytosis, actin dynamics, and cell adhesion, and one of its major activators is the exchange factor Arf nucleotide-binding site opener (ARNO), also called cytohesin-2 [1, 2]. ARNO must be recruited from the cytosol to the plasma membrane in order to activate Arf6, and in addition to a Sec7 nucleotide-exchange domain it contains a C-terminal pleckstrin homology (PH) domain that binds phosphoinositides [3, 4]. ARNO and its three relatives, cytohesin-1, Grp1/cytohesin-3, and cytohesin-4, are expressed as two splice variants, with either two or three glycines in a loop in the phosphoinositide-binding pocket of the PH domain [5, 6]. The diglycine form binds PtdIns(3,4,5)P(3) with high affinity and mediates recruitment of cytohesins to the plasma membrane in response to insulin and growth factors [7, 8]. However, the triglycine form has only micromolar affinity for both PtdIns(3,4,5)P(3) and PtdIns(4,5)P(2), affinities that are insufficient to confer membrane recruitment, raising the question of how the triglycine forms of cytohesins are regulated [5, 9]. Here we show that three related Arf-like GTPases of unknown function, Arl4a, Arl4c, and Arl4d, are able to recruit ARNO and other cytohesins to the plasma membrane by binding to their PH domains irrespective of whether they are in the diglycine or triglycine form. The Arl4 family thus defines a signal-transduction pathway that can mediate the plasma-membrane recruitment of cytohesins independently of a requirement for the generation of PtdIns(3,4,5)P(3).


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Membrana Celular/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Sequência de Aminoácidos , DNA Complementar , Células HeLa , Humanos , Dados de Sequência Molecular , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Técnicas do Sistema de Duplo-Híbrido
7.
Oncogene ; 23(41): 6845-53, 2004 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-15286707

RESUMO

Treatment of cells with microtubule inhibitors results in activation of the mitotic spindle assembly checkpoint, leading to mitotic arrest before anaphase. Upon prolonged treatment, however, cells can adapt and exit mitosis aberrantly, resulting in the occurrence of tetraploid cells in G1. Those cells subsequently arrest in postmitotic G1 due to the activation of a p53-dependent G1 checkpoint. Failure of the G1 checkpoint leads to endoreduplication and further polyploidization. Using HCT116 and isogenic p53-deficient or spindle checkpoint compromised derivatives, we show here that not only p53 but also a functional spindle assembly checkpoint is required for postmitotic G1 checkpoint function. During transient mitotic arrest, p53 stabilization and activation is triggered by a pathway independent of ATM/ATR, Chk1 and Chk2. We further show that a prolonged spindle checkpoint-mediated mitotic arrest is required for proper postmitotic G1 checkpoint function. In addition, we demonstrate that polyploid cells are inhibited to re-enter mitosis by an additional checkpoint acting in G2. Thus, during a normal cell cycle, polyploidization and subsequent aneuploidization is prevented by the function of the mitotic spindle checkpoint, a p53-dependent G1 checkpoint and an additional G2 checkpoint.


Assuntos
Poliploidia , Fuso Acromático/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Células Cultivadas , Dano ao DNA , Fase G1 , Fase G2 , Humanos , Mitose
12.
PLoS One ; 7(8): e44146, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22952903

RESUMO

Activating K-RAS mutations occur at a frequency of 90% in pancreatic cancer, and to date no therapies exist targeting this oncogene. K-RAS signals via downstream effector pathways such as the MAPK and the PI3K signaling pathways, and much effort has been focused on developing drugs targeting components of these pathways. To better understand the requirements for K-RAS and its downstream signaling pathways MAPK and PI3K in pancreatic tumor maintenance, we established an inducible K-RAS knock down system that allowed us to ablate K-RAS in established tumors. Knock down of K-RAS resulted in impaired tumor growth in all pancreatic xenograft models tested, demonstrating that K-RAS expression is indeed required for tumor maintenance of K-RAS mutant pancreatic tumors. We further examined signaling downstream of K-RAS, and detected a robust reduction of pERK levels upon K-RAS knock down. In contrast, no effect on pAKT levels could be observed due to almost undetectable basal expression levels. To investigate the requirement of the MAPK and the PI3K pathways on tumor maintenance, three selected pancreatic xenograft models were tested for their response to MEK or PI3K inhibition. Tumors of all three models regressed upon MEK inhibition, but showed less pronounced response to PI3K inhibition. The effect of MEK inhibition on pancreatic xenografts could be enhanced further by combined application of a PI3K inhibitor. These data provide further rationale for testing combinations of MEK and PI3K inhibitors in clinical trials comprising a patient population with pancreatic cancer harboring mutations in K-RAS.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Mutação/genética , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/genética , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/genética , Animais , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Indazóis/farmacologia , Camundongos , Camundongos Nus , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Sulfonamidas/farmacologia
14.
J Cell Sci ; 119(Pt 8): 1494-503, 2006 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16537643

RESUMO

Small GTPases of the Arf and Rab families play key roles in the function of subcellular organelles. Each GTPase is usually found on only one compartment and, hence, they confer organelle specificity to many intracellular processes. However, there has so far been little evidence for specific GTPases present on lysosomes. Here, we report that two closely related human Arf-like GTPases, Arl8a and Arl8b (also known as Arl10b/c and Gie1/2), localise to lysosomes in mammalian cells, with the single homologue in Drosophila cells having a similar location. Conventionally, membrane binding of Arf and Arl proteins is mediated by both an N-terminal myristoyl group and an N-terminal amphipathic helix that is inserted into the lipid bilayer upon activation of the GTPase. Arl8a and Arl8b do not have N-terminal myristoylation sites, and we find that Arl8b is instead N-terminally acetylated, and an acetylated methionine is necessary for its lysosomal localization. Overexpression of Arl8a or Arl8b results in a microtubule-dependent redistribution of lysosomes towards the cell periphery. Live cell imaging shows that lysosomes move more frequently both toward and away from the cell periphery, suggesting a role for Arl8a and Arl8b as positive regulators of lysosomal transport.


Assuntos
Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Transporte Biológico , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Lisossomos/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Evolução Molecular , Humanos , Lisossomos/fisiologia , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa