Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Genome Res ; 22(8): 1407-18, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22684279

RESUMO

DNA methylation is an essential epigenetic mark that is required for normal development. Knockout of the DNA methyltransferase enzymes in the mouse hematopoietic compartment reveals that methylation is critical for hematopoietic differentiation. To better understand the role of DNA methylation in hematopoiesis, we characterized genome-wide DNA methylation in primary mouse hematopoietic stem cells (HSCs), common myeloid progenitors (CMPs), and erythroblasts (ERYs). Methyl binding domain protein 2 (MBD) enrichment of DNA followed by massively parallel sequencing (MBD-seq) was used to map genome-wide DNA methylation. Globally, DNA methylation was most abundant in HSCs, with a 40% reduction in CMPs, and a 67% reduction in ERYs. Only 3% of peaks arise during differentiation, demonstrating a genome-wide decline in DNA methylation during erythroid development. Analysis of genomic features revealed that 98% of promoter CpG islands are hypomethylated, while 20%-25% of non-promoter CpG islands are methylated. Proximal promoter sequences of expressed genes are hypomethylated in all cell types, while gene body methylation positively correlates with gene expression in HSCs and CMPs. Elevated genome-wide DNA methylation in HSCs and the positive association between methylation and gene expression demonstrates that DNA methylation is a mark of cellular plasticity in HSCs. Using de novo motif discovery, we identified overrepresented transcription factor consensus binding motifs in methylated sequences. Motifs for several ETS transcription factors, including GABPA and ELF1, are overrepresented in methylated regions. Our genome-wide survey demonstrates that DNA methylation is markedly altered during myeloid differentiation and identifies critical regions of the genome and transcription factor programs that contribute to hematopoiesis.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular , Imunoprecipitação da Cromatina , Mapeamento Cromossômico/métodos , Ilhas de CpG , Proteínas de Ligação a DNA/genética , Eritroblastos/citologia , Eritroblastos/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/genética , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/citologia , Camundongos , Células Mieloides/citologia , Células Mieloides/metabolismo , Proteínas Nucleares/genética , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/genética , Transcriptoma
2.
Neurobiol Dis ; 38(2): 181-91, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-18840528

RESUMO

A cluster of low copy repeats on the proximal long arm of chromosome 15 mediates various forms of stereotyped deletions and duplication events that cause a group of neurodevelopmental disorders that are associated with autism or autism spectrum disorders (ASD). The region is subject to genomic imprinting and the behavioral phenotypes associated with the chromosome 15q11.2-q13 disorders show a parent-of-origin specific effect that suggests that an increased copy number of maternally derived alleles contributes to autism susceptibility. Notably, nonimprinted, biallelically expressed genes within the interval also have been shown to be misexpressed in brains of patients with chromosome 15q11.2-q13 genomic disorders, indicating that they also likely play a role in the phenotypic outcome. This review provides an overview of the phenotypes of these disorders and their relationships with ASD and outlines the regional genes that may contribute to the autism susceptibility imparted by copy number variation of the region.


Assuntos
Síndrome de Angelman/genética , Transtorno Autístico/genética , Cromossomos Humanos Par 15/genética , Síndrome de Prader-Willi/genética , Síndrome de Angelman/complicações , Transtorno Autístico/complicações , Criança , Aberrações Cromossômicas , Humanos , Síndrome de Prader-Willi/complicações
3.
Proc Natl Acad Sci U S A ; 104(49): 19416-21, 2007 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-18042715

RESUMO

Mutations in MECP2 cause the autism-spectrum disorder Rett syndrome. MeCP2 is predicted to bind to methylated promoters and silence transcription. However, the first large-scale mapping of neuronal MeCP2-binding sites on 26.3 Mb of imprinted and nonimprinted loci revealed that 59% of MeCP2-binding sites are outside of genes and that only 6% are in CpG islands. Integrated genome-wide promoter analysis of MeCP2 binding, CpG methylation, and gene expression revealed that 63% of MeCP2-bound promoters are actively expressed and that only 6% are highly methylated. These results indicate that the primary function of MeCP2 is not the silencing of methylated promoters.


Assuntos
Regulação da Expressão Gênica , Proteína 2 de Ligação a Metil-CpG/metabolismo , Síndrome de Rett/genética , Sítios de Ligação , Imunoprecipitação da Cromatina , Ilhas de CpG , Metilação de DNA , Inativação Gênica , Humanos , Proteína 2 de Ligação a Metil-CpG/genética , Neurônios/metabolismo , Regiões Promotoras Genéticas
4.
Hum Genet ; 124(3): 235-42, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18726118

RESUMO

Human chromosome 15q11-13 and the syntenic region of mouse chromosome 7 contain multiple imprinted genes necessary for proper neurodevelopment. Due to imprinting, paternal 15q11-13 deficiencies lead to Prader-Willi syndrome (PWS) while maternal 15q11-13 deficiencies cause Angelman syndrome (AS). The mechanisms involved in parental imprinting of this locus are conserved between human and mouse, yet inconsistencies exist in reports of imprinting of the maternally expressed gene Atp10a/ATP10A. Excess maternal 15q11-13 dosage often leads to autism-spectrum disorder therefore further investigation to characterize the true imprinting status of ATP10A in humans was warranted. In this study, we examined allelic expression of ATP10A transcript in 16 control brain samples, and found that 10/16 exhibited biallelic expression while only 6/16 showed monoallelic expression. Contrary to the expectation for a maternally expressed imprinted gene, quantitative RT-PCR revealed significantly reduced ATP10A transcript in Prader-Willi syndrome brains with two maternal chromosomes due to uniparental disomy (PWS UPD). Furthermore, a PWS UPD brain sample with monoallelic ATP10A expression demonstrated that monoallelic expression can be independent of imprinting. Investigation of factors that may influence allelic ATP10A expression status revealed that gender has a major affect, as females were significantly more likely to have monoallelic ATP10A expression than males. Regulatory sequences were also examined, and a promoter polymorphism that disrupts binding of the transcription factor Sp1 also potentially contributes to allelic expression differences in females. Our results show that monoallelic expression of human ATP10A is variable in the population and is influenced by both gender and common genetic variation.


Assuntos
Adenosina Trifosfatases/biossíntese , Adenosina Trifosfatases/genética , Encéfalo/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Membrana Transportadoras/genética , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Cromossomos Humanos Par 15/genética , Feminino , Impressão Genômica , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Síndrome de Prader-Willi/genética , Fatores Sexuais
5.
Hum Mol Genet ; 16(6): 691-703, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17339270

RESUMO

Human chromosome 15q11-13 is a complex locus containing imprinted genes as well as a cluster of three GABA(A) receptor subunit (GABR) genes-GABRB3, GABRA5 and GABRG3. Deletion or duplication of 15q11-13 GABR genes occurs in multiple human neurodevelopmental disorders including Prader-Willi syndrome (PWS), Angelman syndrome (AS) and autism. GABRB3 protein expression is also reduced in Rett syndrome (RTT), caused by mutations in MECP2 on Xq28. Although Gabrb3 is biallelically expressed in mouse brain, conflicting data exist regarding the imprinting status of the 15q11-13 GABR genes in humans. Using coding single nucleotide polymorphisms we show that all three GABR genes are biallelically expressed in 21 control brain samples, demonstrating that these genes are not imprinted in normal human cortex. Interestingly, four of eight autism and one of five RTT brain samples showed monoallelic or highly skewed allelic expression of one or more GABR gene, suggesting that epigenetic dysregulation of these genes is common to both disorders. Quantitative real-time RT-PCR analysis of PWS and AS samples with paternal and maternal 15q11-13 deletions revealed a paternal expression bias of GABRB3, while RTT brain samples showed a significant reduction in GABRB3 and UBE3A. Chromatin immunoprecipitation and bisulfite sequencing in SH-SY5Y neuroblastoma cells demonstrated that MeCP2 binds to methylated CpG sites within GABRB3. Our previous studies demonstrated that homologous 15q11-13 pairing in neurons was dependent on MeCP2 and was disrupted in RTT and autism cortex. Combined, these results suggest that MeCP2 acts as a chromatin organizer for optimal expression of both alleles of GABRB3 in neurons.


Assuntos
Córtex Cerebral/metabolismo , Transtornos Globais do Desenvolvimento Infantil/genética , Cromossomos Humanos Par 15 , Epigênese Genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Receptores de GABA-A/genética , Alelos , Animais , Linhagem Celular Tumoral , Criança , Deleção Cromossômica , Ilhas de CpG , Metilação de DNA , Pai , Impressão Genômica , Humanos , Íntrons , Camundongos , Reação em Cadeia da Polimerase , Síndrome de Prader-Willi/genética
6.
Epigenetics ; 1(4): e1-11, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17486179

RESUMO

Mutations in MECP2, encoding methyl CpG binding protein 2 (MeCP2), cause most cases of Rett syndrome (RTT), an X-linked neurodevelopmental disorder. Both RTT and autism are "pervasive developmental disorders" and share a loss of social, cognitive and language skills and a gain in repetitive stereotyped behavior, following apparently normal perinatal development. Although MECP2 coding mutations are a rare cause of autism, MeCP2 expression defects were previously found in autism brain. To further study the role of MeCP2 in autism spectrum disorders (ASDs), we determined the frequency of MeCP2 expression defects in brain samples from autism and other ASDs. We also tested the hypotheses that MECP2 promoter mutations or aberrant promoter methylation correlate with reduced expression in cases of idiopathic autism. MeCP2 immunofluorescence in autism and other neurodevelopmental disorders was quantified by laser scanning cytometry and compared with control postmortem cerebral cortex samples on a large tissue microarray. A significant reduction in MeCP2 expression compared to age-matched controls was found in 11/14 autism (79%), 9/9 RTT (100%), 4/4 Angelman syndrome (100%), 3/4 Prader-Willi syndrome (75%), 3/5 Down syndrome (60%), and 2/2 attention deficit hyperactivity disorder (100%) frontal cortex samples. One autism female was heterozygous for a rare MECP2 promoter variant that correlated with reduced MeCP2 expression. A more frequent occurrence was significantly increased MECP2 promoter methylation in autism male frontal cortex compared to controls. Furthermore, percent promoter methylation of MECP2 significantly correlated with reduced MeCP2 protein expression. These results suggest that both genetic and epigenetic defects lead to reduced MeCP2 expression and may be important in the complex etiology of autism.


Assuntos
Transtorno Autístico/metabolismo , Metilação de DNA , Lobo Frontal/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Regiões Promotoras Genéticas , Adolescente , Adulto , Sequência de Aminoácidos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Proteína 2 de Ligação a Metil-CpG/metabolismo , Pessoa de Meia-Idade , Análise Serial de Tecidos
7.
Hum Mol Genet ; 14(4): 483-92, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15615769

RESUMO

Autism is a common neurodevelopmental disorder of complex genetic etiology. Rett syndrome, an X-linked dominant disorder caused by MECP2 mutations, and Angelman syndrome, an imprinted disorder caused by maternal 15q11-q13 or UBE3A deficiency, have phenotypic and genetic overlap with autism. MECP2 encodes methyl-CpG-binding protein 2 that acts as a transcriptional repressor for methylated gene constructs but is surprisingly not required for maintaining imprinted gene expression. Here, we test the hypothesis that MECP2 deficiency may affect the level of expression of UBE3A and neighboring autism candidate gene GABRB3 without necessarily affecting imprinted expression. Multiple quantitative methods were used including automated quantitation of immunofluorescence and in situ hybridization by laser scanning cytometry on tissue microarrays, immunoblot and TaqMan PCR. The results demonstrated significant defects in UBE3A/E6AP expression in two different Mecp2 deficient mouse strains and human Rett, Angelman and autism brains compared with controls. Although no difference was observed in the allelic expression of several imprinted transcripts in Mecp2-null brain, Ube3a sense expression was significantly reduced, consistent with the decrease in protein. A non-imprinted gene from 15q11-q13, GABRB3, encoding the beta3 subunit of the GABAA receptor, also showed significantly reduced expression in multiple Rett, Angelman and autism brain samples, and Mecp2 deficient mice by quantitative immunoblot. These results suggest an overlapping pathway of gene dysregulation within 15q11-q13 in Rett, Angelman and autism and implicate MeCP2 in the regulation of UBE3A and GABRB3 expressions in the postnatal mammalian brain.


Assuntos
Síndrome de Angelman/genética , Transtorno Autístico/genética , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Receptores de GABA-A/genética , Proteínas Repressoras/genética , Síndrome de Rett/genética , Ubiquitina-Proteína Ligases/genética , Síndrome de Angelman/metabolismo , Animais , Transtorno Autístico/metabolismo , Encéfalo/metabolismo , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/fisiologia , Cromossomos Humanos Par 15/genética , Proteínas de Ligação a DNA/fisiologia , Feminino , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Impressão Genômica , Humanos , Hibridização In Situ , Citometria de Varredura a Laser , Masculino , Proteína 2 de Ligação a Metil-CpG , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Receptores de GABA-A/metabolismo , Proteínas Repressoras/fisiologia , Síndrome de Rett/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
J Hum Genet ; 47(3): 103-6, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11950061

RESUMO

The tricho-rhino-phalangeal syndromes (TRPS type I, II, and III) are autosomal dominant disorders sharing the following characteristics: slowly growing and sparse scalp hair, medially thick and laterally thin eyebrows, bulbous tip of the nose, long flat philtrum, thin upper lip with vermilion border, and protruding ears. In addition, individuals with TRPS generally share skeletal and bone anomalies, including shortening of the phalanges and metacarpals (mild to severe brachydactyly), cone-shaped epiphyses, hip dysplasia, and short stature. The etiology of the different types of TRPS can result from either single base pair mutations, or the complete deletion of the TRPS1 gene, which encodes a zinc-finger transcription factor located on chromosomal band 8q24.1. We have identified nine heterozygous mutations, five novel and four recurrent, in unrelated families diagnosed with TRPS. The five novel mutations identified show 1- or 2-bp deletions and a single base substitution, whereas all of the recurrent mutations are single base substitutions. Seven of the nine mutations result in a premature stop codon, leading to a truncated, nonfunctional TRPS1 protein. The final two mutations are missense mutations in the GATA DNA binding zinc finger, which is believed to be important for the protein's normal function.


Assuntos
Proteínas de Ligação a DNA/genética , Mutação , Proteínas de Neoplasias , Proteínas Nucleares/genética , Osteocondrodisplasias/genética , Substituição de Aminoácidos , Feminino , Mutação da Fase de Leitura , Humanos , Síndrome de Langer-Giedion/genética , Masculino , Mutação de Sentido Incorreto , Linhagem , Proteínas Repressoras , Fatores de Transcrição , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa