Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Brain ; 147(10): 3379-3394, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-38537648

RESUMO

Dopamine's role as the principal neurotransmitter in motor functions has long been accepted. We broaden this conventional perspective by demonstrating the involvement of non-dopaminergic mechanisms. In mouse models of Parkinson's disease, we observed that L-DOPA elicited a substantial motor response even when its conversion to dopamine was blocked by inhibiting the enzyme aromatic amino acid decarboxylase (AADC). Remarkably, the motor activity response to L-DOPA in the presence of an AADC inhibitor (NSD1015) showed a delayed onset, yet greater intensity and longer duration, peaking at 7 h, compared to when L-DOPA was administered alone. This suggests an alternative pathway or mechanism, independent of dopamine signalling, mediating the motor functions. We sought to determine the metabolites associated with the pronounced hyperactivity observed, using comprehensive metabolomics analysis. Our results revealed that the peak in motor activity induced by NSD1015/L-DOPA in Parkinson's disease mice is associated with a surge (20-fold) in brain levels of the tripeptide ophthalmic acid (also known as ophthalmate in its anionic form). Interestingly, we found that administering ophthalmate directly to the brain rescued motor deficits in Parkinson's disease mice in a dose-dependent manner. We investigated the molecular mechanisms underlying ophthalmate's action and discovered, through radioligand binding and cAMP-luminescence assays, that ophthalmate binds to and activates the calcium-sensing receptor (CaSR). Additionally, our findings demonstrated that a CaSR antagonist inhibits the motor-enhancing effects of ophthalmate, further solidifying the evidence that ophthalmate modulates motor functions through the activation of the CaSR. The discovery of ophthalmate as a novel regulator of motor function presents significant potential to transform our understanding of brain mechanisms of movement control and the therapeutic management of related disorders.


Assuntos
Levodopa , Atividade Motora , Receptores de Detecção de Cálcio , Animais , Camundongos , Receptores de Detecção de Cálcio/metabolismo , Receptores de Detecção de Cálcio/antagonistas & inibidores , Levodopa/farmacologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Camundongos Endogâmicos C57BL , Transtornos dos Movimentos , Masculino , Oligopeptídeos/farmacologia , Dopamina/metabolismo , Humanos , Modelos Animais de Doenças
2.
FASEB J ; 36(9): e22457, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35997997

RESUMO

Tree and shrub barks have been used as folk medicine by numerous cultures across the globe for millennia, for a variety of indications, including as vasorelaxants and antispasmodics. Here, using electrophysiology and myography, we discovered that the KCNQ5 voltage-gated potassium channel mediates vascular smooth muscle relaxant effects of barks used in Native American folk medicine. Bark extracts (1%) from Birch, Cramp Bark, Slippery Elm, White Oak, Red Willow, White Willow, and Wild Cherry each strongly activated KCNQ5 expressed in Xenopus oocytes. Testing of a subset including both the most and the least efficacious extracts revealed that Red Willow, White Willow, and White Oak KCNQ-dependently relaxed rat mesenteric arteries; in contrast, Black Haw bark neither activated KCNQ5 nor induced vasorelaxation. Two compounds common to the active barks (gallic acid and tannic acid) had similarly potent and efficacious effects on both KCNQ5 activation and vascular relaxation, and this together with KCNQ5 modulation by other tannins provides a molecular basis for smooth muscle relaxation effects of Native American folk medicine bark extracts.


Assuntos
Canais de Potássio KCNQ , Vasodilatadores , Animais , Humanos , Artérias Mesentéricas , Ratos , Taninos/farmacologia , Vasodilatadores/farmacologia , Indígena Americano ou Nativo do Alasca
3.
Epilepsy Behav ; 82: 57-63, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29587186

RESUMO

OBJECTIVE: Subunit-specific positive allosteric modulators (PAMs) of gamma-aminobutyric acid-A (GABA-A) receptors are commonly used to uncover the role of GABA-A receptor isoforms in brain function. Recently, we have designed novel PAMs selective for ß2/3-subunit containing GABA-A receptors (ß2/3-selective PAMs) that are nonbenzodiazepine site-mediated and do not show an α-subunit isoform selectivity, yet exhibit anxiolytic efficacy with reduced potential for sedation, cognitive impairment, and tolerance. In this study, we used three novel ß2/3-selective PAMs (2-261, 2-262, and 10029) with differential ß2/3-subunit potency to identify the role of ß2/3-selective receptor isoforms in limbic epileptogenesis. METHODS: Experimental epileptogenesis was induced in mice by daily hippocampus stimulations until each mouse showed generalized (stage 5) seizures. Patch-clamp electrophysiology was used to record GABA-gated currents. Brain levels of ß2/3-selective PAMs were determined for mechanistic correlations. RESULTS: Treatment with the ß2/3-selective PAMs 2-261 (30mg/kg), 2-262 (10mg/kg), and 10029 (30mg/kg), 30min prior to stimulations, significantly suppressed the rate of development of kindled seizure activity without affecting the afterdischarge (AD) signal, indicating their disease-modifying activity. The ß2/3-selective agents suppressed chemical epileptogenesis in the pentylenetetrazol model. Test doses of these agents were devoid of acute antiseizure activity in the kindling model. CONCLUSION: These findings demonstrate that ß2/3-selective PAMs can moderately retard experimental epileptogenesis, indicating the protective role of ß2/3-subunit GABA-A receptor isoforms in the development of epilepsy.


Assuntos
Epilepsia/tratamento farmacológico , Epilepsia/fisiopatologia , Moduladores GABAérgicos/uso terapêutico , Hipocampo/fisiopatologia , Excitação Neurológica/fisiologia , Receptores de GABA-A/fisiologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Moduladores GABAérgicos/farmacologia , Hipocampo/efeitos dos fármacos , Excitação Neurológica/efeitos dos fármacos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Isoformas de Proteínas , Convulsões/fisiopatologia , Lobo Temporal/efeitos dos fármacos , Lobo Temporal/fisiopatologia
4.
Exp Neurol ; 372: 114647, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38070724

RESUMO

Traumatic brain injury (TBI) results in several pathological changes within the hippocampus that result in adverse effects on learning and memory. Therapeutic strategies to enhance learning and memory after TBI are still in the early stages of clinical development. One strategy is to target the α7 nicotinic acetylcholine receptor (nAChR), which is highly expressed in the hippocampus and contributes to the formation of long-term memory. In our previous study, we found that AVL-3288, a positive allosteric modulator of the α7 nAChR, improved cognitive recovery in rats after moderate fluid-percussion injury (FPI). However, whether AVL-3288 improved cognitive recovery specifically through the α7 nAChR was not definitively determined. In this study we utilized Chrna7 knockout mice and compared their recovery to wild-type mice treated with AVL-3288 after TBI. We hypothesized that AVL-3288 treatment would improve learning and memory in wild-type mice, but not Chrna7-/- mice after TBI. Adult male C57BL/6 wild-type and Chrna7-/- mice received sham surgery or moderate controlled cortical impact (CCI) and recovered for 3 months. Mice were then treated with vehicle or AVL-3288 at 30 min prior to contextual fear conditioning. At 3 months after CCI, expression of α7 nAChR, choline acetyltransferase (ChAT), high-affinity choline transporter (ChT), and vesicular acetylcholine transporter (VAChT) were found to be significantly decreased in the hippocampus. Treatment of wild-type mice at 3 months after CCI with AVL-3288 significantly improved cue and contextual fear conditioning, whereas no beneficial effects were observed in Chrna7-/- mice. Parietal cortex and hippocampal atrophy were not improved with AVL-3288 treatment in either wild-type or Chrna7-/- mice. Our results indicate that AVL-3288 improves cognition during the chronic recovery phase of TBI through modulation of the α7 nAChR.


Assuntos
Lesões Encefálicas Traumáticas , Receptor Nicotínico de Acetilcolina alfa7 , Ratos , Masculino , Camundongos , Animais , Receptor Nicotínico de Acetilcolina alfa7/genética , Camundongos Endogâmicos C57BL , Cognição , Hipocampo/metabolismo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo , Camundongos Knockout
5.
Exp Neurol ; 379: 114879, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38942266

RESUMO

Traumatic brain injury (TBI) leads to changes in the neural circuitry of the hippocampus that result in chronic learning and memory deficits. However, effective therapeutic strategies to ameliorate these chronic learning and memory impairments after TBI are limited. Two pharmacological targets for enhancing cognition are nicotinic acetylcholine receptors (nAChRs) and GABAA receptors (GABAARs), both of which regulate hippocampal network activity to form declarative memories. A promising compound, 522-054, both allosterically enhances α7 nAChRs and inhibits α5 subunit-containing GABAARs. Administration of 522-054 enhances long-term potentiation (LTP) and cognitive functioning in non-injured animals. In this study, we assessed the effects of 522-054 on hippocampal synaptic plasticity and learning and memory deficits in the chronic post-TBI recovery period. Adult male Sprague Dawley rats received moderate parasagittal fluid-percussion brain injury or sham surgery. At 12 wk after injury, we assessed basal synaptic transmission and LTP at the Schaffer collateral-CA1 synapse of the hippocampus. Bath application of 522-054 to hippocampal slices reduced deficits in basal synaptic transmission and recovered TBI-induced impairments in LTP. Moreover, treatment of animals with 522-054 at 12 wk post-TBI improved cue and contextual fear memory and water maze acquisition and retention without a measurable effect on cortical or hippocampal atrophy. These results suggest that dual allosteric modulation of α7 nAChR and α5 GABAAR signaling may be a potential therapy for treating cognitive deficits during chronic recovery from TBI.


Assuntos
Lesões Encefálicas Traumáticas , Ratos Sprague-Dawley , Receptores de GABA-A , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Masculino , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Ratos , Receptores de GABA-A/metabolismo , Regulação Alostérica/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia
6.
Commun Biol ; 7(1): 1059, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198706

RESUMO

Pain and inflammation contribute immeasurably to reduced quality of life, yet modern analgesic and anti-inflammatory therapeutics can cause dependence and side effects. Here, we screened 1444 plant extracts, prepared primarily from native species in California and the United States Virgin Islands, against two voltage-gated K+ channels - T-cell expressed Kv1.3 and nociceptive-neuron expressed Kv7.2/7.3. A subset of extracts both inhibits Kv1.3 and activates Kv7.2/7.3 at hyperpolarized potentials, effects predicted to be anti-inflammatory and analgesic, respectively. Among the top dual hits are witch hazel and fireweed; polymodal modulation of multiple K+ channel types by hydrolysable tannins contributes to their dual anti-inflammatory, analgesic actions. In silico docking and mutagenesis data suggest pore-proximal extracellular linker sequence divergence underlies opposite effects of hydrolysable tannins on different Kv1 isoforms. The findings provide molecular insights into the enduring, widespread medicinal use of witch hazel and fireweed and demonstrate a screening strategy for discovering dual anti-inflammatory, analgesic small molecules.


Assuntos
Analgésicos , Anti-Inflamatórios , Extratos Vegetais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Analgésicos/farmacologia , Analgésicos/química , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Humanos , Camundongos , Coriandrum/química , Simulação de Acoplamento Molecular , Plantas Medicinais/química , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/química , Masculino , Taninos/farmacologia , Taninos/química
7.
Commun Biol ; 6(1): 644, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322081

RESUMO

Voltage-gated potassium (Kv) channels in the KCNQ subfamily serve essential roles in the nervous system, heart, muscle and epithelia. Different heteromeric KCNQ complexes likely serve distinct functions in the brain but heteromer subtype-specific small molecules for research or therapy are lacking. Rosemary (Salvia rosmarinus) is an evergreen plant used medicinally for millennia for neurological and other disorders. Here, we report that rosemary extract is a highly efficacious opener of heteromeric KCNQ3/5 channels, with weak effects on KCNQ2/3. Using functional screening we find that carnosic acid, a phenolic diterpene from rosemary, is a potent, highly efficacious, PIP2 depletion-resistant KCNQ3 opener with lesser effects on KCNQ5 and none on KCNQ1 or KCNQ2. Carnosic acid is also highly selective for KCNQ3/5 over KCNQ2/3 heteromers. Medicinal chemistry, in silico docking, and mutagenesis reveal that carboxylate-guanidinium ionic bonding with an S4-5 linker arginine underlies the KCNQ3 opening proficiency of carnosic acid, the effects of which on KCNQ3/5 suggest unique therapeutic potential and a molecular basis for ancient neurotherapeutic use of rosemary.


Assuntos
Plantas Medicinais , Rosmarinus , Canal de Potássio KCNQ3/química , Canal de Potássio KCNQ2/química , Isoformas de Proteínas
8.
J Pharmacol Exp Ther ; 336(3): 908-15, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21159751

RESUMO

α5 Subunit-containing GABA(A) receptors (GABA(A)Rs) and α7 neuronal nicotinic-acetylcholine receptors (nAChRs) are members of the Cys-loop family of ligand-gated ion channels (LGICs) that mediate cognitive and attentional processes in the hippocampus. α5 GABA(A)Rs alter network activity by tonic inhibition of CA1/CA3 pyramidal cells of the hippocampus. Postsynaptic α7 nAChRs in the hippocampus regulate inhibitory GABAergic interneuron activity required for synchronization of pyramidal neurons in the CA1, whereas presynaptic α7 nAChRs regulate glutamate release. Can simultaneous allosteric modulation of these LGICs produce synergistic effects on cognition? We show that combined transient application of two allosteric modulators that individually 1) inhibit α5 GABA(A)Rs and 2) enhance α7 nAChRs causes long-term potentiation (LTP) of mossy fiber stimulation-induced excitatory postsynaptic currents (EPSC) from CA1 pyramidal neurons of rat hippocampal slices. The LTP effect evoked by two compounds is replicated by 3-(2,5-difluorophenyl)-6-(N-ethylindol-5-yl)-1,2,4-triazolo[4,3-b]pyridazine (522-054), a compound we designed to simultaneously inhibit α5 GABA(A)Rs and enhance α7 nAChRs. Selective antagonists for either receptor block sustained EPSC potentiation produced by 522-054. In vivo, 522-054 enhances performance in the radial arm maze and facilitates attentional states in the five-choice serial reaction time trial with similar receptor antagonist sensitivity. These observations may translate into therapeutic utility of dual action compounds in diseases of hippocampal-based cognitive impairment.


Assuntos
Cognição/fisiologia , Hipocampo/fisiologia , Canais Iônicos de Abertura Ativada por Ligante/fisiologia , Potenciação de Longa Duração/fisiologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Cognição/efeitos dos fármacos , Feminino , Hipocampo/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores de GABA-A/fisiologia , Receptores Nicotínicos/fisiologia , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7
9.
Nat Med ; 10(1): 31-2, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14647497

RESUMO

Patients taking fluoroquinolone antibiotics such as norfloxacin exhibit a low incidence of convulsions and anxiety. These side effects probably result from antagonism of the neurotransmitter gamma-aminobutyric acid (GABA) at the brain GABA(A) receptor complex (GRC). Modification of norfloxacin yields molecules such as compound 4 that potentiate GABA action with alpha(2) subunit selectivity. Compound 4 is anxiolytic but does not cause sedation, and may represent a new class of ligands that have anxiolytic activity without sedative liability.


Assuntos
Ansiolíticos/farmacologia , Anti-Infecciosos/farmacologia , Fluoroquinolonas/farmacologia , Ansiolíticos/química , Ansiolíticos/metabolismo , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Fluoroquinolonas/química , Fluoroquinolonas/metabolismo , Humanos , Ligação Proteica , Receptores de GABA-A/metabolismo , Proteínas Recombinantes/metabolismo , Ácido gama-Aminobutírico/metabolismo
10.
J Pharmacol Exp Ther ; 332(3): 1040-53, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19940102

RESUMO

GABA(A) receptor (R) positive allosteric modulators that selectively modulate GABA(A)Rs containing beta(2)- and/or beta(3)- over beta(1)-subunits have been reported across diverse chemotypes. Examples include loreclezole, mefenamic acid, tracazolate, and etifoxine. In general,"beta(2/3)-selective" GABA(A)R positive allosteric modulators are nonbenzodiazepines (nonBZs), do not show alpha-subunit isoform selectivity, yet have anxiolytic efficacy with reduced ataxic/sedative effects in animal models and humans. Here, we report on an enantiomeric pair of nonBZ GABA(A)R positive allosteric modulators that demonstrate differential beta-subunit isoform selectivity. We have tested this enantiomeric pair along with a series of other beta(2/3)-subunit selective, alpha-subunit isoform-selective, BZ and nonBZ GABA(A) positive allosteric modulators using electrophysiological, pharmacokinetic, and behavioral assays to test the hypothesis that ataxia may be correlated with the extent of modulation at beta(1)-subunit-containing GABA(A)Rs. Our findings provide an alternative strategy for designing anxioselective allosteric modulators of the GABA(A)R with BZ-like anxiolytic efficacy by reducing or eliminating activity at beta(1)-subunit-containing GABA(A)Rs.


Assuntos
Ansiolíticos/farmacologia , Ataxia/prevenção & controle , Moduladores GABAérgicos/farmacologia , Receptores de GABA-A/fisiologia , Regulação Alostérica , Amidas/química , Amidas/farmacocinética , Amidas/farmacologia , Animais , Ansiolíticos/química , Ansiolíticos/farmacocinética , Ataxia/fisiopatologia , Ataxia/psicologia , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Moduladores GABAérgicos/química , Moduladores GABAérgicos/farmacocinética , Humanos , Masculino , Camundongos , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Isoformas de Proteínas/fisiologia , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Relação Estrutura-Atividade , Xenopus laevis
11.
Neurobiol Stress ; 12: 100207, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32435660

RESUMO

In the 1980s particular endogenous metabolites of progesterone and of deoxycorticosterone were revealed to be potent, efficacious, positive allosteric modulators (PAMs) of the GABAA receptor (GABAAR). These reports were followed by the discovery that such steroids may be synthesised not only in peripheral endocrine glands, but locally in the central nervous system (CNS), to potentially act as paracrine, or autocrine "neurosteroid" messengers, thereby fine tuning neuronal inhibition. These discoveries triggered enthusiasm to elucidate the physiological role of such neurosteroids and explore whether their levels may be perturbed in particular psychiatric and neurological disorders. In preclinical studies the GABAAR-active steroids were shown to exhibit anxiolytic, anticonvulsant, analgesic and sedative properties and at relatively high doses to induce a state of general anaesthesia. Collectively, these findings encouraged efforts to investigate the therapeutic potential of neurosteroids and related synthetic analogues. However, following over 30 years of investigation, realising their possible medical potential has proved challenging. The recent FDA approval for the natural neurosteroid allopregnanolone (brexanolone) to treat postpartum depression (PPD) should trigger renewed enthusiasm for neurosteroid research. Here we focus on the influence of neuroactive steroids on GABA-ergic signalling and on the challenges faced in developing such steroids as anaesthetics, sedatives, analgesics, anticonvulsants, antidepressants and as treatments for neurodegenerative disorders.

12.
Pain ; 160(1): 198-209, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30204648

RESUMO

Chronic neuropathic pain may be caused, in part, by loss of inhibition in spinal pain processing pathways due to attenuation of local GABAergic tone. Nociception and nocifensive behaviors are reduced after enhancement of tonically activated extrasynaptic GABAAR-mediated currents by agonist ligands for δ subunit-containing GABAARs. However, typical ligands that target δ subunit-containing GABAARs are limited due to sedative effects at higher doses. We used the spinal nerve ligation (SNL) and gp120 models of experimental neuropathic pain to evaluate compound 2-261, a nonbenzodiazepine site positive allosteric modulator of α4ß3δ GABAARs optimized to be nonsedative by selective activation of ß2/3-subunit-containing GABAARs over receptor subtypes incorporating ß1 subunits. Similar levels of 2-261 were detected in the brain and plasma after intraperitoneal administration. Although systemic 2-261 did not alter sensory thresholds in sham-operated animals, it significantly reversed SNL-induced thermal and tactile hypersensitivity in a GABAAR-dependent fashion. Intrathecal 2-261 produced conditioned place preference and elevated dopamine levels in the nucleus accumbens of nerve-injured, but not sham-operated, rats. In addition, systemic pretreatment with 2-261 blocked conditioned place preference from spinal clonidine in SNL rats. Moreover, 2-261 reversed thermal hyperalgesia and partially reversed tactile allodynia in the gp120 model of HIV-related neuropathic pain. The effects of 2-261 likely required interaction with the α4ß3δ GABAAR because 2-301, a close structural analog of 2-261 with limited extrasynaptic receptor efficacy, was not active. Thus, 2-261 may produce pain relief with diminished side effects through selective modulation of ß2/3-subunit-containing extrasynaptic GABAARs.


Assuntos
Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Moduladores GABAérgicos/uso terapêutico , Receptores de GABA/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Dor Crônica/etiologia , Condicionamento Operante , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Moduladores GABAérgicos/química , Infecções por HIV/complicações , Hiperalgesia/fisiopatologia , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/patologia , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Técnicas de Patch-Clamp , Traumatismos dos Nervos Periféricos/complicações , Resistência Física/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de GABA/genética
13.
Front Pharmacol ; 10: 560, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178732

RESUMO

Seizures induced by organophosphorus nerve agent exposure become refractory to treatment with benzodiazepines because these drugs engage synaptic γ-aminobutyric acid-A receptors (GABAARs) that rapidly internalize during status epilepticus (SE). Extrasynaptic GABAARs, such as those containing α4ß3δ subunits, are a putative pharmacological target to comprehensively manage nerve agent-induced seizures since they do not internalize during SE and are continuously available for activation. Neurosteroids related to allopregnanolone have been tested as a possible replacement for benzodiazepines because they target both synaptic and extrasynaptic GABAARs receptors. A longer effective treatment window, extended treatment efficacy, and enhanced neuroprotection represent significant advantages of neurosteroids over benzodiazepines. However, neurosteroid use is limited by poor physicochemical properties arising from the intrinsic requirement of the pregnane steroid core structure for efficacy rendering drug formulation problematic. We tested a non-steroidal enaminone GABAAR modulator that interacts with both synaptic and extrasynaptic GABAARs on a binding site distinct from neurosteroids or benzodiazepines for efficacy to control electrographic SE induced by diisopropyl fluorophosphate or soman intoxication in rats. Animals were treated with standard antidotes, and experimental therapeutic treatment was given following 1 h (diisopropyl fluorophosphate model) or 20 min (soman model) after SE onset. We found that the enaminone 2-261 had an extended duration of seizure termination (>10 h) in the diisopropyl fluorophosphate intoxication model in the presence or absence of midazolam (MDZ). 2-261 also moderately potentiated MDZ in the soman-induced seizure model but had limited efficacy as a stand-alone anticonvulsant treatment due to slow onset of action. 2-261 significantly reduced neuronal death in brain areas associated with either diisopropyl fluorophosphate- or soman-induced SE. 2-261 represents an alternate chemical template from neurosteroids for enhancing extrasynaptic α4ß3δ GABAAR activity to reverse SE from organophosphorous intoxication.

14.
PLoS One ; 14(10): e0223180, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31581202

RESUMO

Cognitive impairments are a common consequence of traumatic brain injury (TBI). The hippocampus is a subcortical structure that plays a key role in the formation of declarative memories and is highly vulnerable to TBI. The α7 nicotinic acetylcholine receptor (nAChR) is highly expressed in the hippocampus and reduced expression and function of this receptor are linked with cognitive impairments in Alzheimer's disease and schizophrenia. Positive allosteric modulation of α7 nAChRs with AVL-3288 enhances receptor currents and improves cognitive functioning in naïve animals and healthy human subjects. Therefore, we hypothesized that targeting the α7 nAChR with the positive allosteric modulator AVL-3288 would enhance cognitive functioning in the chronic recovery period of TBI. To test this hypothesis, adult male Sprague Dawley rats received moderate parasagittal fluid-percussion brain injury or sham surgery. At 3 months after recovery, animals were treated with vehicle or AVL-3288 at 30 min prior to cue and contextual fear conditioning and the water maze task. Treatment of TBI animals with AVL-3288 rescued learning and memory deficits in water maze retention and working memory. AVL-3288 treatment also improved cue and contextual fear memory when tested at 24 hr and 1 month after training, when TBI animals were treated acutely just during fear conditioning at 3 months post-TBI. Hippocampal atrophy but not cortical atrophy was reduced with AVL-3288 treatment in the chronic recovery phase of TBI. AVL-3288 application to acute hippocampal slices from animals at 3 months after TBI rescued basal synaptic transmission deficits and long-term potentiation (LTP) in area CA1. Our results demonstrate that AVL-3288 improves hippocampal synaptic plasticity, and learning and memory performance after TBI in the chronic recovery period. Enhancing cholinergic transmission through positive allosteric modulation of the α7 nAChR may be a novel therapeutic to improve cognition after TBI.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Regulação Alostérica/efeitos dos fármacos , Anilidas/sangue , Anilidas/farmacocinética , Anilidas/farmacologia , Anilidas/uso terapêutico , Animais , Atrofia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Doença Crônica , Transtornos Cognitivos/fisiopatologia , Condicionamento Clássico , Medo , Isoxazóis/sangue , Isoxazóis/farmacocinética , Isoxazóis/farmacologia , Isoxazóis/uso terapêutico , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto , Memória de Curto Prazo , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos
15.
J Pharmacol Exp Ther ; 323(3): 907-15, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17873105

RESUMO

Drugs that antagonize nicotinic acetylcholine receptors (nAChRs) can be used to inhibit nicotine-induced behavior in both humans and animals. The aim of our experiments is to establish a proof-of-principle that antagonism of nAChRs by negative allosteric modulation can alter behavior in a relevant animal model of addiction, nicotine self-administration. We have identified a novel, negative allosteric modulator of nAChRs, UCI-30002 [N-(1,2,3,4-tetrahydro-1-naphthyl)-4-nitroaniline], with selectivity for the major neuronal nAChR subtypes over muscle-type nAChRs. After systemic administration, UCI-30002 significantly reduces nicotine self-administration in rats on both fixed ratio and progressive ratio schedules of reinforcement. The minimum effective dose that significantly alters nicotine self-administration corresponds to brain concentrations of UCI-30002 that produce at least 30% inhibition of the major neuronal nAChR subtypes measured in vitro. UCI-30002 has no effect on responding for food reinforcement in rats on either type of schedule, indicating that there is no effect on general responding or natural reward. UCI-30002 represents validation of the concept that negative allosteric modulators may have significant benefits as a strategy for treating nicotine addiction and encourages the development of subtype-selective modulators.


Assuntos
Compostos de Anilina/uso terapêutico , Naftalenos/uso terapêutico , Nicotina/administração & dosagem , Antagonistas Nicotínicos/uso terapêutico , Receptores Nicotínicos/metabolismo , Tabagismo , Sítio Alostérico , Compostos de Anilina/administração & dosagem , Compostos de Anilina/efeitos adversos , Animais , Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eletrofisiologia , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/etnologia , Ligantes , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Naftalenos/administração & dosagem , Naftalenos/efeitos adversos , Nicotina/efeitos adversos , Antagonistas Nicotínicos/administração & dosagem , Antagonistas Nicotínicos/efeitos adversos , Antagonistas Nicotínicos/farmacocinética , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Convulsões/induzido quimicamente , Convulsões/prevenção & controle , Autoadministração , Tabagismo/tratamento farmacológico , Tabagismo/metabolismo , Xenopus laevis
16.
J Med Chem ; 50(14): 3369-79, 2007 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-17571865

RESUMO

A series of enaminone esters and amides have been developed as potent allosteric modulators of gamma-aminobutyric acidA (GABAA) receptors. The compounds bind to a novel modulatory site that is independent of the benzodiazepine (BZ), isosteric GABA, and neuroactive steroid binding sites. Structure-activity relationship (SAR) studies resulted in the synthesis of the c-Bu amide 16h with an in vitro potency of 7 nM based on inhibition of [35S]TBPS binding. The activity of the enaminones as positive allosteric modulators was confirmed with electrophysiological measurements in oocytes expressing alpha1beta2gamma2L GABAA receptors. The i-Pr, s-Bu, c-Pr, and c-Bu amides (16e-h) were orally active in mice with profound central nervous system depressant effects. The i-Pr amide 16e was an orally active anxiolytic in the mouse light-dark paradigm.


Assuntos
Amidas/farmacologia , Receptores de GABA-A/efeitos dos fármacos , Administração Oral , Animais , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
17.
Neuropharmacology ; 126: 38-47, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28842344

RESUMO

Autism spectrum disorder (ASD) is associated with two core symptoms (social communication deficits and stereotyped repetitive behaviors) in addition to a number of comorbidities. There are no FDA-approved drugs for the core symptoms and the changes that underlie these behaviors are not fully understood. One hypothesis is an imbalance of the excitation (E)/inhibition (I) ratio with excessive E and diminished I occurring in specific neuronal circuits. Data suggests that both gamma-aminobutyric acidA (GABAA) and α7 nicotinic acetylcholine receptors (nAChRs) significantly impact E/I. BTBR T+tf/J (BTBR) mice are a model that display an autism-like phenotype with impaired social interaction and stereotyped behavior. A ß2/3-subunit containing GABAA receptor (GABAAR) subtype selective positive allosteric modulator (PAM), 2-261, and an α7 nAChR subtype selective PAM, AVL-3288, were tested in social approach and repetitive self-grooming paradigms. 2-261 was active in the social approach but not the self-grooming paradigm, whereas AVL-3288 was active in both. Neither compound impaired locomotor activity. Modulating α7 nAChRs alone may be sufficient to correct these behavioral and cognitive deficits. GABAergic and nicotinic compounds are already in various stages of clinical testing for treatment of the core symptoms and comorbidities associated with ASD. Our findings and those of others suggest that compounds that have selective activities at GABAAR subtypes and the α7 nAChR may address not only the core symptoms, but many of the associated comorbidities as well and warrant further investigation in other models of ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Receptores de GABA-A/fisiologia , Receptor Nicotínico de Acetilcolina alfa7/fisiologia , Regulação Alostérica , Anilidas/administração & dosagem , Animais , Transtorno do Espectro Autista/prevenção & controle , Modelos Animais de Doenças , Asseio Animal/efeitos dos fármacos , Humanos , Isoxazóis/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Comportamento Social
18.
J Psychopharmacol ; 31(4): 434-441, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28196430

RESUMO

Type I positive allosteric modulators (PAMs) of the alpha7-nicotinic receptor enhance its cholinergic activation while preserving the spatiotemporal features of synaptic transmission and the receptor's characteristic rapid desensitization kinetics. Alpha7-nicotinic receptor agonists have shown promise for improving cognition in schizophrenia, but longer-term trials have been disappointing. Therefore, the type I PAM AVL-3288 was evaluated for safety and preliminary evidence of neurocognitive effect in healthy human subjects. Single-dose oral administration in ascending doses was conducted in a double-blind, placebo-controlled Phase I trial in non-smokers. The trial found indication of positive but non-significant effects on neurocognition at 10 and 30 mg, two doses that produced overlapping peak levels. There was also some evidence for effects on inhibition of the P50 auditory evoked potential to repeated stimuli, a biomarker that responds to alpha7-nicotinic receptor activation. The pharmacokinetic characteristics were consistent between subjects, and there were no safety concerns. The effects and safety profile were also assessed at 3 mg in a cohort of smokers, in whom concurrent nicotine administration did not alter either effects or safety. The trial demonstrates that a type I PAM can be safely administered to humans and that it has potential positive neurocognitive effects in central nervous system (CNS) disorders.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Anilidas/efeitos adversos , Anilidas/uso terapêutico , Isoxazóis/efeitos adversos , Isoxazóis/uso terapêutico , Transtornos Neurocognitivos/tratamento farmacológico , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Adulto , Anilidas/farmacocinética , Biomarcadores/metabolismo , Cognição/efeitos dos fármacos , Método Duplo-Cego , Feminino , Humanos , Isoxazóis/farmacocinética , Masculino , Transtornos Neurocognitivos/metabolismo , Nicotina/administração & dosagem , Agonistas Nicotínicos/efeitos adversos , Agonistas Nicotínicos/farmacocinética , Agonistas Nicotínicos/uso terapêutico , Receptores Nicotínicos/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Adulto Jovem
19.
J Drug Target ; 14(3): 127-36, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16753826

RESUMO

The endogenous opioid peptide leu-enkephalin (ENK) was chemically modified by a method known as reversible aqueous lipidization (REAL) with a novel amine-reacting lipophilic dimethylmaleic anhydride analog, 3,4-bis(decylthiomethyl)-2,5-furandione. The binding affinity of the product, REAL-ENK, to opioid receptors was greatly reduced. This prodrug was stable in neutral and basic phosphate buffers but underwent rapid hydrolysis under acidic conditions in the presence of 50% acetonitrile. It also showed increased stability toward enzymatic degradations in various tissue preparations. The half-lives of REAL-ENK in mouse small intestinal mucosal homogenate and liver homogenate were 12 and 80 min, representing a 12- and 32-fold increase over those of ENK itself. In contrast to ENK (t(1/2) 6.7 min), REAL-ENK was stable in mouse plasma. More importantly, REAL-ENK produced significant and sustained antinociception mediated by peripheral opioid receptors in a rodent inflammatory pain model. Pharmacokinetic studies employing a radioimmunoassay (RIA) demonstrated that significantly higher and sustained plasma peptide levels were detected up to 24 h following the oral administration of REAL-ENK in normal mice. The peak concentration and area under the curve of oral REAL-ENK were 4.4 and 21 times higher than that of oral ENK. Our results indicate that like its disulfide-based counterpart, amine-based REAL may be an enabling technology which can be applied to enhance metabolic stability, increase oral absorption, and preserve and possibly prolong the pharmacological activity of peptide drugs.


Assuntos
Encefalina Leucina/administração & dosagem , Lipídeos/química , Administração Oral , Animais , Células CACO-2 , Encefalina Leucina/química , Encefalina Leucina/farmacocinética , Meia-Vida , Humanos , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Fígado/metabolismo , Camundongos , Radioimunoensaio , Distribuição Tecidual
20.
J Med Chem ; 47(6): 1547-52, 2004 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-14998340

RESUMO

A series of 3-(4-phenoxyphenyl)-1H-pyrazoles were synthesized and characterized as potent state-dependent sodium channel blockers. A limited SAR study was carried out to delineate the chemical requirements for potency. The results indicate that the distal phenyl group is critical for activity but will tolerate lipophilic (+pi) electronegative (+sigma) substituents at the ortho and/or para position. Substitution at the pyrazole nitrogen with a H-bond donor improves potency. Compound 18 showed robust activity in the rat Chung neuropathy paradigm.


Assuntos
Analgésicos/síntese química , Pirazóis/síntese química , Bloqueadores dos Canais de Sódio/síntese química , Analgésicos/química , Analgésicos/farmacologia , Animais , Linhagem Celular , Humanos , Masculino , Dor/tratamento farmacológico , Dor/etiologia , Técnicas de Patch-Clamp , Doenças do Sistema Nervoso Periférico/complicações , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Pirazóis/química , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/química , Bloqueadores dos Canais de Sódio/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa