Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 22(6): 725-730, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36894773

RESUMO

The discovery of spin-transfer torque (STT) enabled the control of the magnetization direction in magnetic devices in nanoseconds using an electrical current. Ultrashort optical pulses have also been used to manipulate the magnetization of ferrimagnets at picosecond timescales by bringing the system out of equilibrium. So far, these methods of magnetization manipulation have mostly been developed independently within the fields of spintronics and ultrafast magnetism. Here we show optically induced ultrafast magnetization reversal taking place within less than a picosecond in rare-earth-free archetypal spin valves of [Pt/Co]/Cu/[Co/Pt] commonly used for current-induced STT switching. We find that the magnetization of the free layer can be switched from a parallel to an antiparallel alignment, as in STT, indicating the presence of an unexpected, intense and ultrafast source of opposite angular momentum in our structures. Our findings provide a route to ultrafast magnetization control by bridging concepts from spintronics and ultrafast magnetism.

2.
Nano Lett ; 20(12): 8654-8660, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33226825

RESUMO

Since it was recently demonstrated in a spin-valve structure, magnetization reversal of a ferromagnetic layer using a single ultrashort optical pulse has attracted attention for future ultrafast and energy-efficient magnetic storage or memory devices. However, the mechanism and the role of the magnetic properties of the ferromagnet as well as the time scale of the magnetization switching are not understood. Here, we investigate single-shot all-optical magnetization switching in a GdFeCo/Cu/[CoxNi1-x/Pt] spin-valve structure. We demonstrate that the threshold fluence for switching both the GdFeCo and the ferromagnetic layer depends on the laser pulse duration and the thickness and the Curie temperature of the ferromagnetic layer. We are able to explain most of the experimental results using a phenomenological model. This work provides a way to engineer ferromagnetic materials for energy efficient single-shot all-optical magnetization switching.

3.
Nat Commun ; 14(1): 445, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707525

RESUMO

When exciting a magnetic material with a femtosecond laser pulse, the amplitude of magnetization is no longer constant and can decrease within a time scale comparable to the duration of the optical excitation. This ultrafast demagnetization can even trigger an ultrafast, out of equilibrium, phase transition to a paramagnetic state. The reciprocal effect, namely an ultrafast remagnetization from the zero magnetization state, is a necessary ingredient to achieve a complete ultrafast reversal. However, the speed of remagnetization is limited by the universal critical slowing down which appears close to a phase transition. Here we demonstrate that magnetization can be reversed in a few hundreds of femtoseconds by overcoming the critical slowing down thanks to ultrafast spin cooling and spin heating mechanisms. We foresee that these results outline the potential of ultrafast spintronics for future ultrafast and energy efficient magnetic memory and storage devices. Furthermore, this should motivate further theoretical works in the field of femtosecond magnetization reversal.

4.
Adv Sci (Weinh) ; 10(4): e2204683, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36507620

RESUMO

The impact of plasmonic surface lattice resonances on the magneto-optical properties and energy absorption efficiency has been studied in arrays of [Co/Gd/Pt]N multilayer nanodisks. Varying the light wavelength, the disk diameter, and the period of the array, it is demonstrated that surface lattice resonances allow all-optical single pulse switching of [Co/Gd/Pt]N nanodisk arrays with an energy 400% smaller than the energy needed to switch a continuous [Co/Gd/Pt]N film. Moreover, the magneto-optical Faraday effect is enhanced at the resonance condition by up to 5,000%. The influence of the disk diameter and array period on the amplitude, width and position of the surface lattice resonances is in qualitative agreement with theoretical calculations and opens the way to designing magnetic metasurfaces for all-optical magnetization switching applications.

5.
ACS Appl Mater Interfaces ; 15(4): 5608-5619, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689950

RESUMO

Manipulating magnetic skyrmions by means of a femtosecond (fs) laser pulse has attracted great interest due to their promising applications in efficient information-storage devices with ultralow energy consumption. However, the mechanism underlying the creation of skyrmions induced by an fs laser is still lacking. As a result, a key challenge is to reveal the pathway for the massive reorientation of magnetization from trivial to nontrivial topological states. Here, we studied a series of ferrimagnetic CoHo alloys and investigated the effect of a single laser pulse on the magnetic states. Thanks to the time-resolved magneto-optical Kerr effect and imaging techniques, we demonstrate that the laser-induced phase transitions from single domains into a topological skyrmion phase are mediated by the transient in-plane magnetization state, in real time and space domains, respectively. Combining experiments and micromagnetic simulations, we propose a two-step process for creating skyrmions through laser pulse irradiation: (i) the electron temperature enhancement induces a spin reorientation transition on a picosecond (ps) timescale due to the suppression of perpendicular magnetic anisotropy (PMA) and (ii) the PMA slowly restores, accompanied by out-of-plane magnetization recovery, leading to the generation of skyrmions with the help of spin fluctuations. This work provides a route to control skyrmion patterns using an fs laser, thereby establishing the foundation for further exploration of topological magnetism at ultrafast timescales.

6.
Adv Sci (Weinh) ; 7(23): 2001996, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304754

RESUMO

New methods to induce magnetization switching in a thin ferromagnetic material using femtosecond laser pulses without the assistance of an applied external magnetic field have recently attracted a lot of interest. It has been shown that by optically triggering the reversal of the magnetization in a GdFeCo layer, the magnetization of a nearby ferromagnetic thin film can also be reversed via spin currents originating in the GdFeCo layer. Here, using a similar structure, it is shown that the magnetization reversal of the GdFeCo is not required in order to reverse the magnetization of the ferromagnetic thin film. This switching is attributed to the ultrafast spin current and can be generated by the GdFeCo demagnetization. A larger energy efficiency of the ferromagnetic layer single pulse switching is obtained for a GdFeCo with a larger Gd concentration. Those ultrafast and energy efficient switchings observed in such spintronic devices open a new path toward ultrafast and energy efficient magnetic memories.

7.
Phys Rev Lett ; 93(19): 197403, 2004 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-15600878

RESUMO

It is demonstrated that ultrafast generation of ferromagnetic order can be achieved by driving a material from an antiferromagnetic to a ferromagnetic state using femtosecond optical pulses. Experimental proof is provided for chemically ordered FeRh thin films. A subpicosecond onset of induced ferromagnetism is followed by a slower increase over a period of about 30 ps when FeRh is excited above a threshold fluence. Both experiment and theory provide evidence that the underlying phase transformation is accompanied, but not driven, by a lattice expansion. The mechanism for the observed ultrafast magnetic transformation is identified to be the strong ferromagnetic exchange mediated via Rh moments induced by Fe spin fluctuations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa