Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Redox Biol ; 38: 101804, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33260088

RESUMO

Pharmacological ascorbate (P-AscH-) combined with standard of care (SOC) radiation and temozolomide is being evaluated in a phase 2 clinical trial (NCT02344355) in the treatment of glioblastoma (GBM). Previously published data demonstrated that paramagnetic iron (Fe3+) catalyzes ascorbate's oxidation to form diamagnetic iron (Fe2+). Because paramagnetic Fe3+ may influence relaxation times observed in MR imaging, quantitative MR imaging of P-AscH--induced changes in redox-active Fe was assessed as a biomarker for therapy response. Gel phantoms containing either Fe3+ or Fe2+ were imaged with T2* and quantitative susceptibility mapping (QSM). Fifteen subjects receiving P-AscH- plus SOC underwent T2* and QSM imaging four weeks into treatment. Subjects were scanned: pre-P-AscH- infusion, post-P-AscH- infusion, and post-radiation (3-4 h between scans). Changes in T2* and QSM relaxation times in tumor and normal tissue were calculated and compared to changes in Fe3+ and Fe2+ gel phantoms. A GBM mouse model was used to study the relationship between the imaging findings and the labile iron pool. Phantoms containing Fe3+ demonstrated detectable changes in T2* and QSM relaxation times relative to Fe2+ phantoms. Compared to pre-P-AscH-, GBM T2* and QSM imaging were significantly changed post-P-AscH- infusion consistent with conversion of Fe3+ to Fe2+. No significant changes in T2* or QSM were observed in normal brain tissue. There was moderate concordance between T2* and QSM changes in both progression free survival and overall survival. The GBM mouse model showed similar results with P-AscH- inducing greater changes in tumor labile iron pools compared to the normal tissue. CONCLUSIONS: T2* and QSM MR-imaging responses are consistent with P-AscH- reducing Fe3+ to Fe2+, selectively in GBM tumor volumes and represent a potential biomarker of response. This study is the first application using MR imaging in humans to measure P-AscH--induced changes in redox-active iron.


Assuntos
Ferro , Imageamento por Ressonância Magnética , Biomarcadores , Encéfalo , Oxirredução
2.
Radiat Res ; 191(6): 491-496, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31039080

RESUMO

Based on encouraging results from several early-phase clinical trials, there is renewed interest in the use of pharmacological ascorbate (i.e., intravenous administration resulting in >≈10 mM plasma ascorbate concentrations) in combination with standard-of-care cancer treatments including radiation and/or chemotherapy. Under normal, healthy physiological conditions, humans maintain plasma ascorbate concentrations in the range of 40-80 lM. However, in vivo antitumor activity requires supraphysiological plasma concentrations on the order of ≈20 mM. The stability of ascorbate in whole blood has been well studied. The goal of this work was to determine the appropriate handling methods of blood samples, after treatment with pharmacological ascorbate, which allow for the optimal measurement of ascorbate in plasma for dosing verification. Our findings indicate that ascorbate concentrations (mM) are relatively stable in whole blood collected in sodium heparin tubes and stored on ice (or at 4°C) for up to 24 h. After 24 h, ascorbate levels in plasma are relatively stable at 4°C for up to 72 h. At -20°C, plasma concentrations are relatively stable for 2-3 weeks, while at -80°C, ascorbate concentrations in plasma are stable for at least one month. In contrast, patient samples showed better stability when stored as whole blood compared to plasma at 4°C but increasing hemolysis over time may significantly skew ascorbate measurements. Additionally, patient samples can be reliably stored as plasma at -20°C for up to three weeks in either a frost-containing or frost-free environment. This information can guide the collection, processing and storage of clinical samples after pharmacological ascorbate infusions amenable to multi-center clinical trials.


Assuntos
Ácido Ascórbico/sangue , Coleta de Amostras Sanguíneas/métodos , Ensaios Clínicos como Assunto , Temperatura Baixa , Feminino , Humanos , Masculino , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa