Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Am J Pathol ; 193(2): 191-200, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36336066

RESUMO

Kidney cyst expansion in tuberous sclerosis complex (TSC) or polycystic kidney disease (PKD) requires active secretion of chloride (Cl-) into the cyst lumen. In PKD, Cl- secretion is primarily mediated via the cystic fibrosis transmembrane conductance regulator (CFTR) in principal cells. Kidney cystogenesis in TSC is predominantly composed of type A intercalated cells, which do not exhibit noticeable expression of CFTR. The identity of the Cl--secreting molecule(s) in TSC cyst epithelia remains speculative. RNA-sequencing analysis results were used to examine the expression of FOXi1, the chief regulator of acid base transporters in intercalated cells, along with localization of Cl- channel 5 (ClC5), in various models of TSC. Results from Tsc2+/- mice showed that the expansion of kidney cysts corresponded to the induction of Foxi1 and correlated with the appearance of ClC5 and H+-ATPase on the apical membrane of cyst epithelia. In various mouse models of TSC, Foxi1 was robustly induced in the kidney, and ClC5 and H+-ATPase were expressed on the apical membrane of cyst epithelia. Expression of ClC5 was also detected on the apical membrane of cyst epithelia in humans with TSC but was absent in humans with autosomal dominant PKD or in a mouse model of PKD. These results indicate that ClC5 is expressed on the apical membrane of cyst epithelia and is a likely candidate mediating Cl- secretion into the kidney cyst lumen in TSC.


Assuntos
Cistos , Doenças Renais Policísticas , Esclerose Tuberosa , Humanos , Animais , Camundongos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Cloretos/metabolismo , Esclerose Tuberosa/metabolismo , Rim/metabolismo , Epitélio/metabolismo , Fatores de Transcrição Forkhead/metabolismo
2.
Orthod Craniofac Res ; 26 Suppl 1: 188-195, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36866957

RESUMO

This review will briefly examine the development of 3D-printed scaffolds for craniofacial bone regeneration. We will, in particular, highlight our work using Poly(L-lactic acid) (PLLA) and collagen-based bio-inks. This paper is a narrative review of the materials used for scaffold fabrication by 3D printing. We have also reviewed two types of scaffolds that we designed and fabricated. Poly(L-lactic acid) (PLLA) scaffolds were printed using fused deposition modelling technology. Collagen-based scaffolds were printed using a bioprinting technique. These scaffolds were tested for their physical properties and biocompatibility. Work in the emerging field of 3D-printed scaffolds for bone repair is briefly reviewed. Our work provides an example of PLLA scaffolds that were successfully 3D-printed with optimal porosity, pore size and fibre thickness. The compressive modulus was similar to, or better than, the trabecular bone of the mandible. PLLA scaffolds generated an electric potential upon cyclic/repeated loading. The crystallinity was reduced during the 3D printing. The hydrolytic degradation was relatively slow. Osteoblast-like cells did not attach to uncoated scaffolds but attached well and proliferated after coating the scaffold with fibrinogen. Collagen-based bio-ink scaffolds were also printed successfully. Osteoclast-like cells adhered, differentiated, and survived well on the scaffold. Efforts are underway to identify means to improve the structural stability of the collagen-based scaffolds, perhaps through mineralization by the polymer-induced liquid precursor process. 3D-printing technology is promising for constructing next-generation bone regeneration scaffolds. We describe our efforts to test PLLA and collagen scaffolds produced by 3D printing. The 3D-printed PLLA scaffolds showed promising properties akin to natural bone. Collagen scaffolds need further work to improve structural integrity. Ideally, such biological scaffolds will be mineralized to produce true bone biomimetics. These scaffolds warrant further investigation for bone regeneration.


Assuntos
Regeneração Óssea , Alicerces Teciduais , Alicerces Teciduais/química , Impressão Tridimensional , Colágeno , Ácido Láctico , Engenharia Tecidual/métodos
3.
Orthod Craniofac Res ; 26(4): 632-641, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36997279

RESUMO

AIMS: Pathological dental root resorption and alveolar bone loss are often detected only after irreversible damage. Biomarkers in the gingival crevicular fluid or saliva could provide a means for early detection; however, such biomarkers have proven elusive. We hypothesize that a multiomic approach might yield reliable diagnostic signatures for root resorption and alveolar bone loss. Previously, we showed that extracellular vesicles (EVs) from osteoclasts and odontoclasts differ in their protein composition. In this study, we investigated the metabolome of EVs from osteoclasts, odontoclasts and clasts (non-resorbing clastic cells). MATERIALS AND METHODS: Mouse haematopoietic precursors were cultured on dentine, bone or plastic, in the presence of recombinant RANKL and CSF-1 to trigger differentiation along the clastic line. On Day 7, the cells were fixed and the differentiation state and resorptive status of the clastic cells were confirmed. EVs were isolated from the conditioned media on Day 7 and characterized by nanoparticle tracking and electron microscopy to ensure quality. Global metabolomic profiling was performed using a Thermo Q-Exactive Orbitrap mass spectrometer with a Dionex UHPLC and autosampler. RESULTS: We identified 978 metabolites in clastic EVs. Of those, 79 are potential biomarkers with Variable Interdependent Parameters scores of 2 or greater. Known metabolites cytidine, isocytosine, thymine, succinate and citrulline were found at statistically higher levels in EVs from odontoclasts compared with osteoclasts. CONCLUSION: We conclude that numerous metabolites found in odontoclast EVs differ from those in osteoclast EVs, and thus represent potential biomarkers for root resorption and periodontal tissue destruction.


Assuntos
Perda do Osso Alveolar , Vesículas Extracelulares , Reabsorção da Raiz , Camundongos , Animais , Osteoclastos , Perda do Osso Alveolar/metabolismo , Biomarcadores/metabolismo
4.
Respir Res ; 23(1): 232, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068572

RESUMO

BACKGROUND: Alpha-1 antitrypsin deficiency (AATD) is a genetic disorder most commonly secondary to a single mutation in the SERPINA1 gene (PI*Z) that causes misfolding and accumulation of alpha-1 antitrypsin (AAT) in hepatocytes and mononuclear phagocytes which reduces plasma AAT and creates a toxic gain of function. This toxic gain of function promotes a pro-inflammatory phenotype in macrophages that contributes to lung inflammation and early-onset COPD, especially in individuals who smoke cigarettes. The aim of this study is to determine the role of cigarette exposed AATD macrophages and bronchial epithelial cells in AATD-mediated lung inflammation. METHODS: Peripheral blood mononuclear cells from AATD and healthy individuals were differentiated into alveolar-like macrophages and exposed to air or cigarette smoke while in culture. Macrophage endoplasmic reticulum stress was quantified and secreted cytokines were measured using qPCR and cytokine ELISAs. To determine whether there is "cross talk" between epithelial cells and macrophages, macrophages were exposed to extracellular vesicles released by airway epithelial cells exposed to cigarette smoke and their inflammatory response was determined. RESULTS: AATD macrophages spontaneously produce several-fold more pro-inflammatory cytokines as compared to normal macrophages. AATD macrophages have an enhanced inflammatory response when exposed to cigarette smoke-induced extracellular vesicles (EVs) released from airway epithelial cells. Cigarette smoke-induced EVs induce expression of GM-CSF and IL-8 in AATD macrophages but have no effect on normal macrophages. Release of AAT polymers, potent neutrophil chemo attractants, were also increased from AATD macrophages after exposure to cigarette smoke-induced EVs. CONCLUSIONS: The expression of mutated AAT confers an inflammatory phenotype in AATD macrophages which disposes them to an exaggerated inflammatory response to cigarette smoke-induced EVs, and thus could contribute to progressive lung inflammation and damage in AATD individuals.


Assuntos
Fumar Cigarros , Vesículas Extracelulares , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Deficiência de alfa 1-Antitripsina , Fumar Cigarros/efeitos adversos , Citocinas/metabolismo , Células Epiteliais/metabolismo , Vesículas Extracelulares/metabolismo , Leucócitos Mononucleares/metabolismo , Ativação de Macrófagos , Pneumonia/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Nicotiana , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Deficiência de alfa 1-Antitripsina/genética
5.
J Biol Chem ; 294(16): 6240-6252, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30833329

RESUMO

α1-Antitrypsin deficiency (AATD) is an inherited disease characterized by emphysema and liver disease. AATD is most often caused by a single amino acid substitution at position 342 in the mature protein, resulting in the Z mutation of the AAT gene (ZAAT). This substitution is associated with misfolding and accumulation of ZAAT in the endoplasmic reticulum (ER) of hepatocytes, causing a toxic gain of function. ERdj3 is an ER luminal DnaJ homologue, which, along with calreticulin, directly interacts with misfolded ZAAT. We hypothesize that depletion of each of these chaperones will change the fate of ZAAT polymers. Our study demonstrates that calreticulin modulation reveals a novel ZAAT degradation mechanism mediated by exosomes. Using human PiZZ hepatocytes and K42, a mouse calreticulin-deficient fibroblast cell line, our results show ERdj3 and calreticulin directly interact with ZAAT in PiZZ hepatocytes. Silencing calreticulin induces calcium independent ZAAT-ERdj3 secretion through the exosome pathway. This co-secretion decreases ZAAT aggregates within the ER of hepatocytes. We demonstrate that calreticulin has an inhibitory effect on exosome-mediated ZAAT-ERdj3 secretion. This is a novel ZAAT degradation process that involves a DnaJ homologue chaperone bound to ZAAT. In this context, calreticulin modulation may eliminate the toxic gain of function associated with aggregation of ZAAT in lung and liver, thus providing a potential new therapeutic approach to the treatment of AATD-related liver disease.


Assuntos
Calreticulina/biossíntese , Exossomos/metabolismo , Mutação de Sentido Incorreto , Proteólise , alfa 1-Antitripsina/metabolismo , Substituição de Aminoácidos , Animais , Calreticulina/genética , Linhagem Celular , Exossomos/genética , Exossomos/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Camundongos , alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/metabolismo , Deficiência de alfa 1-Antitripsina/patologia
6.
Cell Commun Signal ; 18(1): 140, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887613

RESUMO

BACKGROUND: Alpha-1 antitrypsin deficiency (AATD)-mediated liver disease is a toxic "gain-of-function" inflammation in the liver associated with intracellular retention of mutant alpha-1 antitrypsin. The clinical presentation of the disease includes fibrosis, cirrhosis and liver failure. However, the pathogenic mechanism of AATD-mediated liver disease is not well understood. Here, we investigated the role of plasma extracellular vesicles (EVs) in progression of AATD-mediated liver disease. METHODS: EVs were isolated from plasma of AATD individuals with liver disease and healthy controls. Their cytokines and miRNA content were examined by multiplex assay and small RNA sequencing. The bioactivity of EVs was assessed by qPCR, western blot analysis and immunofluorescent experiments using human hepatic stellate cells (HSCs) treated with EVs isolated from control or AATD plasma samples. RESULTS: We have found that AATD individuals have a distinct population of EVs with pathological cytokine and miRNA contents. When HSCs were cultured with AATD plasma derived-EVs, the expression of genes related to the development of fibrosis were significantly amplified compared to those treated with healthy control plasma EVs. CONCLUSION: AATD individuals have a distinct population of EVs with abnormal cytokine and miRNA contents and the capacity to activate HSCs and mediate fibrosis. Better understanding of the components which cause liver inflammation and fibrogenesis, leading to further liver injury, has the potential to lead to the development of new treatments or preventive strategies to prevent AATD-mediated liver disease. Video abstract.


Assuntos
Vesículas Extracelulares/patologia , Cirrose Hepática/patologia , Fígado/patologia , Deficiência de alfa 1-Antitripsina/patologia , Adulto , Idoso , Citocinas/análise , Vesículas Extracelulares/genética , Feminino , Regulação da Expressão Gênica , Humanos , Fígado/metabolismo , Cirrose Hepática/sangue , Cirrose Hepática/complicações , Cirrose Hepática/genética , Masculino , MicroRNAs/análise , MicroRNAs/genética , Pessoa de Meia-Idade , Deficiência de alfa 1-Antitripsina/sangue , Deficiência de alfa 1-Antitripsina/complicações , Deficiência de alfa 1-Antitripsina/genética
7.
Orthod Craniofac Res ; 22 Suppl 1: 101-106, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31074148

RESUMO

Extracellular vesicles (EVs) are 30-150 nm in diameter vesicles released by cells that serve important intercellular regulatory functions. EVs include exosomes and microvesicles. Exosomes form in multivesicular bodies and are released extracellularly as the multivesicular bodies fuse with the plasma membrane. Microvesicles bud directly from the plasma membrane. Here, we examine methods that are available or emerging to detect and study EVs during orthodontic tooth movement (OTM). EV's involvement in regulating bone remodelling associated with OTM may be demonstrated by adding isolated EVs to an animal model to change the rate of tooth movement. Exosomes in multivesicular bodies might be detected by immunogold labelling of markers in sections from the tooth and jaw and detection by electron microscopy. Gingival crevicular fluid (GCF) is enriched in EVs. Detection and characterization of EVs released by osteoclasts during resorption have been described, and this information could be used to analyse EVs in OTM models. Regulatory EVs may be enriched in the GCF from teeth that are being moved or are undergoing root resorption. Emerging approaches, including nanoparticle tracking, ExoView and micro- and nanofluidics, show promise for studying EVs in the GCF. Techniques that amplify signal, including polymerase chain reaction (PCR), provide the sensitivity necessary to utilize EVs from GCF as biomarkers. Studies of the role of EVs in OTM will provide fresh insight that may identify means for enhancing OTM procedures. EVs in GCF may include biomarkers for bone remodelling during OTM, orthodontic-associated root resorption, and other dental pathologies.


Assuntos
Exossomos , Vesículas Extracelulares , Reabsorção da Raiz , Animais , Líquido do Sulco Gengival , Técnicas de Movimentação Dentária
8.
Orthod Craniofac Res ; 22 Suppl 1: 180-185, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31074132

RESUMO

OBJECTIVES: Orthodontic treatment consists of numerous appliance activations that rely on stimulation of osteoclasts at alveolar bone sites. However, the action of osteoclast-like cells on dentin ("odontoclasts") is a pathological side effect of orthodontic treatment. The aim of this article is twofold: (a) To report preliminary results from ongoing cell culture experiments to identify unique markers of dentin resorption, and (b) To discuss our work using nanoparticle tracking analysis (NTA) and exosomes for developing biological fluid-based biopsies to monitor clastic cell activity. SETTING AND SAMPLE POPULATION: Twelve healthy volunteers in permanent dentition. MATERIAL AND METHODS: For the in vitro experiments, murine clastic cell precursors were cultured on dentin or bone slices for 7 days and phage-display biopanning was used to identify molecular surface differences between osteoclasts and odontoclasts. In the human study, gingival crevicular fluid (GCF) samples were collected using different tools and analysed for protein and exosome recovery. RESULTS: Biopanning generated antibody fragments that were uniquely reactive to odontoclasts. Numerous nanoparticles in the size range of exosomes were detected in all of the human GCF samples. CONCLUSIONS: Our results support that there are molecular differences between osteoclasts and odontoclasts. Emerging technologies may allow the use of exosomes in GCF as a clinical tool to detect markers of root resorption.


Assuntos
Reabsorção da Raiz , Animais , Dentina , Líquido do Sulco Gengival , Humanos , Camundongos , Osteoclastos , Proteômica
9.
Int J Mol Sci ; 21(1)2019 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-31881680

RESUMO

Extracellular vesicles (EVs) are shed by all eukaryotic cells and have emerged as important intercellular regulators. EVs released by osteoclasts were recently identified as important coupling factors in bone remodeling. They are shed as osteoclasts resorb bone and stimulate osteoblasts to form bone to replace the bone resorbed. We reported the proteomic content of osteoclast EVs with data from two-dimensional, high resolution liquid chromatography/mass spectrometry. In this article, we examine in detail the actin and actin-associated proteins found in osteoclast EVs. Like EVs from other cell types, actin and various actin-associated proteins were abundant. These include components of the polymerization machinery, myosin mechanoenzymes, proteins that stabilize or depolymerize microfilaments, and actin-associated proteins that are involved in regulating integrins. The selective incorporation of actin-associated proteins into osteoclast EVs suggests that they have roles in the formation of EVs and/or the regulatory signaling functions of the EVs. Regulating integrins so that they bind extracellular matrix tightly, in order to attach EVs to the extracellular matrix at specific locations in organs and tissues, is one potential active role for actin-associated proteins in EVs.


Assuntos
Actinas/metabolismo , Vesículas Extracelulares/metabolismo , Citoesqueleto de Actina/metabolismo , Exossomos/metabolismo , Humanos , Integrinas/metabolismo , Miosinas/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo
11.
Biomacromolecules ; 16(8): 2374-81, 2015 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-26151628

RESUMO

Polymers of similar molecular weights and chemical constitution but varying in their macromolecular architectures were conjugated to osteoprotegerin (OPG) to determine the effect of polymer topology on protein activity in vitro and in vivo. OPG is a protein that inhibits bone resorption by preventing the formation of mature osteoclasts from the osteoclast precursor cell. Accelerated bone loss disorders, such as osteoporosis, rheumatoid arthritis, and metastatic bone disease, occur as a result of increased osteoclastogenesis, leading to the severe weakening of the bone. OPG has shown promise as a treatment in bone disorders; however, it is rapidly cleared from circulation through rapid liver uptake, and frequent, high doses of the protein are necessary to achieve a therapeutic benefit. We aimed to improve the effectiveness of OPG by creating OPG-polymer bioconjugates, employing reversible addition-fragmentation chain transfer polymerization to create well-defined polymers with branching densities varying from linear, loosely branched to densely branched. Polymers with each of these architectures were conjugated to OPG using a "grafting-to" approach, and the bioconjugates were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The OPG-polymer bioconjugates showed retention of activity in vitro against osteoclasts, and each bioconjugate was shown to be nontoxic. Preliminary in vivo studies further supported the nontoxic characteristics of the bioconjugates, and measurement of the bone mineral density in rats 7 days post-treatment via peripheral quantitative computed tomography suggested a slight increase in bone mineral density after administration of the loosely branched OPG-polymer bioconjugate.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Reabsorção Óssea/tratamento farmacológico , Osteoporose/tratamento farmacológico , Osteoprotegerina/química , Animais , Artrite Reumatoide/patologia , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/patologia , Humanos , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Osteoporose/patologia , Osteoprotegerina/administração & dosagem , Polímeros/administração & dosagem , Polímeros/química , Ratos
12.
Dent Traumatol ; 30(5): 362-367, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24502251

RESUMO

BACKGROUND: Intracanal medicaments are used to disinfect the root canal system, reduce interappointment pain and inflammation, and prevent resorption. Bacterial components such as lipopolysaccharide (LPS) are implicated in the development of pulpal and periapical inflammation and inducing osteoclastogenesis. Propolis is a natural, non-toxic substance collected from bee's wax that has been used for many years in folk medicine. Propolis has been demonstrated to have antibacterial and anti-inflammatory properties. Our previous studies have shown that propolis inhibits osteoclast maturation. However, the effect of propolis on the inflammatory response of pulp cells and osteoclasts has not been explored. AIM: The purpose of this study was to evaluate whether propolis alters the inflammatory response of three endodontically relevant cell lines: mouse odontoblast-like cells (MDPC-23), macrophages (RAW264.7), and osteoclasts. MATERIAL AND METHODS: Cells were exposed to 0-20 ug ml(-1) LPS to induce an inflammatory response, in the presence of propolis or vehicle control. Culture supernatants were collected after 6 and 24 h, and expression of multiple soluble mediators was determined using Luminex(®) multiplex technology. RESULTS: Propolis was effective in reducing secretion of the LPS-induced inflammatory cyto/chemokines: IL-1α, IL-6, IL-12(p70), IL-15, G-CSF, TNF-α, MIP-1α, MCP-1, and IP-10. CONCLUSION: Our results demonstrate that propolis suppresses the LPS-induced inflammatory response of key cells within the root canal system.


Assuntos
Polpa Dentária/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/administração & dosagem , Osteoclastos/metabolismo , Própole , Animais , Linhagem Celular , Polpa Dentária/citologia , Camundongos , Osteoclastos/citologia
13.
Am J Orthod Dentofacial Orthop ; 145(6): 787-98, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24880850

RESUMO

INTRODUCTION: In this study, we used liquid chromatography-mass spectrometry (LC-MS) to investigate the differences in the composition of gingival crevicular fluid between resorbing deciduous molars and nonresorbing permanent teeth. The main goal was to identify novel biomarkers associated with root resorption. METHODS: Eleven children (4 boys, 7 girls) in the mixed dentition were selected to participate in this split-mouth design study, in which a deciduous second molar with radiographic evidence of root resorption served as the experimental site, and the permanent first molar on the contralateral quadrant was the control site. Gingival crevicular fluid was collected using absorbing strips. A total of 22 samples (11 root resorption, 11 control) were each analyzed with 1-dimensional LC-MS. The remaining samples were then pooled across the 11 patients and analyzed by 2-dimensional LC-MS. The output files were converted to mascot generic format, which can be used to perform protein identification with conventional search engines. RESULTS: The 2-dimensional LC-MS protocol was able to identify 2789 and 2421 proteins in the control and resorption pooled samples, respectively. In this population, we detected significantly upregulated and downregulated proteins in the teeth with root resorption. Interestingly, many of these proteins are characteristically found in exosomes. CONCLUSIONS: We identified novel proteins that might prove to be useful biomarkers of root resorption, individually or as part of a panel.


Assuntos
Líquido do Sulco Gengival/química , Reabsorção da Raiz/metabolismo , Albuminas/análise , Biomarcadores/análise , Criança , Cromatografia Líquida/métodos , Dentição Mista , Feminino , Humanos , Masculino , Dente Molar/metabolismo , Proteínas/análise , Espectrometria de Massas em Tandem/métodos , Esfoliação de Dente/metabolismo , Dente Decíduo/metabolismo
14.
J Biol Chem ; 287(21): 17894-17904, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22474295

RESUMO

Enoxacin has been identified as a small molecule inhibitor of binding between the B2-subunit of vacuolar H+-ATPase (V-ATPase) and microfilaments. It inhibits bone resorption by calcitriol-stimulated mouse marrow cultures. We hypothesized that enoxacin acts directly and specifically on osteoclasts by disrupting the interaction between plasma membrane-directed V-ATPases, which contain the osteoclast-selective a3-subunit of V-ATPase, and microfilaments. Consistent with this hypothesis, enoxacin dose-dependently reduced the number of multinuclear cells expressing tartrate-resistant acid phosphatase (TRAP) activity produced by RANK-L-stimulated osteoclast precursors. Enoxacin (50 µM) did not induce apoptosis as measured by TUNEL and caspase-3 assays. V-ATPases containing the a3-subunit, but not the "housekeeping" a1-subunit, were isolated bound to actin. Treatment with enoxacin reduced the association of V-ATPase subunits with the detergent-insoluble cytoskeleton. Quantitative PCR revealed that enoxacin triggered significant reductions in several osteoclast-selective mRNAs, but levels of various osteoclast proteins were not reduced, as determined by quantitative immunoblots, even when their mRNA levels were reduced. Immunoblots demonstrated that proteolytic processing of TRAP5b and the cytoskeletal protein L-plastin was altered in cells treated with 50 µM enoxacin. Flow cytometry revealed that enoxacin treatment favored the expression of high levels of DC-STAMP on the surface of osteoclasts. Our data show that enoxacin directly inhibits osteoclast formation without affecting cell viability by a novel mechanism that involves changes in posttranslational processing and trafficking of several proteins with known roles in osteoclast function. We propose that these effects are downstream to blocking the binding interaction between a3-containing V-ATPases and microfilaments.


Assuntos
Apoptose , Enoxacino/farmacologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Osteoclastos/metabolismo , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras/metabolismo , Actinas/metabolismo , Animais , Proteínas do Citoesqueleto , Citoesqueleto/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Proteínas de Membrana/biossíntese , Camundongos , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso/biossíntese , Osteoclastos/citologia , Fosfoproteínas/metabolismo , Proteólise , RNA Mensageiro/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-37936884

RESUMO

Aim: Receptor activator of nuclear factor-kappa B (RANK)-containing extracellular vesicles (EVs) bind RANK-Ligand (RANKL) on osteoblasts, and thereby simultaneously inhibit bone resorption and promote bone formation. Because of this, they are attractive candidates for therapeutic bone anabolic agents. Previously, RANK was detected in 1 in every 36 EVs from osteoclasts by immunogold electron microscopy. Here, we have sought to characterize the subpopulation of EVs from osteoclasts that contains RANK in more detail. Methods: The tetraspanins CD9 and CD81 were localized in osteoclasts by immunofluorescence. EVs were visualized by transmission electron microscopy. A Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) and immunoaffinity isolations examined whether RANK is enriched in specific types of EVs. Results: Immunofluorescence showed CD9 was mostly on or near the plasma membrane of osteoclasts. In contrast, CD81 was localized deeper in the osteoclast's cytosolic vesicular network. By interferometry, both CD9 and CD81 positive EVs from osteoclasts were small (56-83 nm in diameter), consistent with electron microscopy. The CD9 and CD81 EV populations were mostly distinct, and only 22% of the EVs contained both markers. RANK was detected by SP-IRIS in 2%-4% of the CD9-containing EVs, but not in CD81-positive EVs, from mature osteoclasts. Immunomagnetic isolation of CD9-containing EVs from conditioned media of osteoclasts removed most of the RANK. A trace amount of RANK was isolated with CD81. Conclusion: RANK was enriched in a subset of the CD9-positive EVs. The current study provides the first report of selective localization of RANK in subsets of EVs.

16.
Front Mol Biosci ; 9: 874186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35601831

RESUMO

Background: Several members of the SLC26A family of transporters, including SLC26A3 (DRA), SLC26A5 (prestin), SLC26A6 (PAT-1; CFEX) and SLC26A9, form multi-protein complexes with a number of molecules (e.g., cytoskeletal proteins, anchoring or adaptor proteins, cystic fibrosis transmembrane conductance regulator, and protein kinases). These interactions provide regulatory signals for these molecules. However, the identity of proteins that interact with the Cl-/HCO3 - exchanger, SLC26A4 (pendrin), have yet to be determined. The purpose of this study is to identify the protein(s) that interact with pendrin. Methods: A yeast two hybrid (Y2H) system was employed to screen a mouse kidney cDNA library using the C-terminal fragment of SLC26A4 as bait. Immunofluorescence microscopic examination of kidney sections, as well as co-immunoprecipitation assays, were performed using affinity purified antibodies and kidney protein extracts to confirm the co-localization and interaction of pendrin and the identified binding partners. Co-expression studies were carried out in cultured cells to examine the effect of binding partners on pendrin trafficking and activity. Results: The Y2H studies identified IQ motif-containing GTPase-activating protein 1 (IQGAP1) as a protein that binds to SLC26A4's C-terminus. Co-immunoprecipitation experiments using affinity purified anti-IQGAP1 antibodies followed by western blot analysis of kidney protein eluates using pendrin-specific antibodies confirmed the interaction of pendrin and IQGAP1. Immunofluorescence microscopy studies demonstrated that IQGAP1 co-localizes with pendrin on the apical membrane of B-intercalated cells, whereas it shows basolateral expression in A-intercalated cells in the cortical collecting duct (CCD). Functional and confocal studies in HEK-293 cells, as well as confocal studies in MDCK cells, demonstrated that the co-transfection of pendrin and IQGAP1 shows strong co-localization of the two molecules on the plasma membrane along with enhanced Cl-/HCO3 - exchanger activity. Conclusion: IQGAP1 was identified as a protein that binds to the C-terminus of pendrin in B-intercalated cells. IQGAP1 co-localized with pendrin on the apical membrane of B-intercalated cells. Co-expression of IQGAP1 with pendrin resulted in strong co-localization of the two molecules and increased the activity of pendrin in the plasma membrane in cultured cells. We propose that pendrin's interaction with IQGAP1 may play a critical role in the regulation of CCD function and physiology, and that disruption of this interaction could contribute to altered pendrin trafficking and/or activity in pathophysiologic states.

17.
J Histochem Cytochem ; 70(2): 169-179, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34915746

RESUMO

Osteoclasts are cells whose main function is the resorption of bone matrix. However, several factors, including medications, can interfere with the resorption process. Alendronate (ALN), a nitrogen-containing type of bisphosphonate, and dexamethasone (DEX), a glucocorticoid, are drugs that may affect the resorption activity. The aim of this study is to investigate the effects of ALN, and/or DEX on osteoclast gene expression and resorption activity in primary mouse marrow cultures stimulated with 1,25-dihydroxyvitamin D3, a model for the bone microenvironment. Cultures were treated only with ALN (10-5 M), DEX (10-6 M), and with a combination of both agents. Viability assays performed at days 5, 7, and 9 showed the highest number of viable cells at day 7. All the following assays were then performed at day 7 of cell culture: tartrate resistant acid phosphatase (TRAP) histochemistry, receptor activator of nuclear factor kappa B ligand (RANKL) immunofluorescence, osteoprotegerin (OPG), and RANKL gene expression by qPCR and resorption analysis by scanning electron microscopy. Treatment with ALN, DEX, and the combination of both did not promote significant changes in the number of TRAP+ cells, although larger giant cells were detected in groups treated with DEX. DEX treatment increased the gene expression of RANKL and reduced OPG. The treatment with ALN reduced the depth of the resorption pits, but their inhibitory effect was less effective when administered with DEX.


Assuntos
Alendronato/farmacologia , Medula Óssea/efeitos dos fármacos , Reabsorção Óssea/tratamento farmacológico , Dexametasona/farmacologia , Osteoclastos/efeitos dos fármacos , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos BALB C
18.
Artigo em Inglês | MEDLINE | ID: mdl-33982033

RESUMO

Receptor activator of nuclear factor kappa B-ligand (RANKL), its receptor RANK, and osteoprotegerin which binds RANKL and acts as a soluble decoy receptor, are essential controllers of bone remodeling. They also play important roles in establishing immune tolerance and in the development of the lymphatic system and mammary glands. In bone, RANKL stimulates osteoclast formation by binding RANK on osteoclast precursors and osteoclasts. This is required for bone resorption. Recently, RANKL and RANK have been shown to be functional components of extracellular vesicles (EVs). Data linking RANKL and RANK in EVs to biological regulatory roles are reviewed, and crucial unanswered questions are examined. RANKL and RANK are transmembrane proteins and their presence in EVs allows them to act at a distance from their cell of origin. Because RANKL-bearing osteocytes and osteoblasts are often spatially distant from RANK-containing osteoclasts in vivo, this may be crucial for the stimulation of osteoclast formation and bone resorption. RANK in EVs from osteoclasts has the capacity to stimulate a RANKL reverse signaling pathway in osteoblasts that promotes bone formation. This serves to couple bone resorption with bone formation and has inspired novel bifunctional therapeutic agents. RANKL- and RANK- containing EVs in serum may serve as biomarkers for bone and immune pathologies. In summary, EVs containing RANKL and RANK have been identified as intercellular regulators in bone biology. They add complexity to the central signaling network responsible for maintaining bone. RANKL- and RANK-containing EVs are attractive as drug targets and as biomarkers.

19.
Br Dent J ; 230(11): 760-764, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34117435

RESUMO

Orthodontic retention remains one of the great challenges in orthodontics. In this article, we discuss what is on the horizon to help address this challenge, including biological approaches to reduce relapse, treating patients without using retainers, technological developments, personalised medicine and the impact of COVID-19 on approaches to orthodontic retention.


Assuntos
COVID-19 , Contenções Ortodônticas , Humanos , Desenho de Aparelho Ortodôntico , Ortodontia Corretiva , Recidiva , SARS-CoV-2
20.
Sci Rep ; 11(1): 9214, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33911158

RESUMO

The (pro)renin receptor (PRR) is a multifunctional integral membrane protein that serves as a component of the vacuolar H+-ATPase (V-ATPase) and also activates (pro)renin. We recently showed that full-length PRR, found as part of a V-ATPase sub-complex, is abundant in extracellular vesicles shed by osteoclasts. Here, we tested whether these extracellular vesicles stimulate (pro)renin. Extracellular vesicles isolated from the conditioned media of RAW 264.7 osteoclast-like cells or primary osteoclasts were characterized and counted by nanoparticle tracking. Immunoblotting confirmed that full-length PRR was present. Extracellular vesicles from osteoclasts dose-dependently stimulated (pro)renin activity, while extracellular vesicles from 4T1 cancer cells, in which we did not detect PRR, did not activate (pro)renin. To confirm that the ability of extracellular vesicles from osteoclasts to stimulate (pro)renin activity was due to the PRR, the "handle region peptide" from the PRR, a competitive inhibitor of PRR activity, was tested. It dose-dependently blocked the ability of extracellular vesicles to stimulate the enzymatic activity of (pro)renin. In summary, the PRR, an abundant component of extracellular vesicles shed by osteoclasts, stimulates (pro)renin activity. This represents a novel mechanism by which extracellular vesicles can function in intercellular regulation, with direct implications for bone biology.


Assuntos
Angiotensinogênio/metabolismo , Vesículas Extracelulares/metabolismo , Osteoclastos/metabolismo , Receptores de Superfície Celular/metabolismo , Renina/metabolismo , Animais , Camundongos , Osteoclastos/citologia , Receptores de Superfície Celular/genética , Renina/genética , Receptor de Pró-Renina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa