RESUMO
Understanding the demographic drivers of range contractions is important for predicting species' responses to climate change; however, few studies have examined the effects of climate change on survival and recruitment across species' ranges. We show that climate change can drive trailing edge range contractions through the effects on apparent survival, and potentially recruitment, in a migratory songbird. We assessed the demographic drivers of trailing edge range contractions using a long-term demography dataset for the black-throated blue warbler (Setophaga caerulescens) collected across elevational climate gradients at the trailing edge and core of the breeding range. We used a Bayesian hierarchical model to estimate the effect of climate change on apparent survival and recruitment and to forecast population viability at study plots through 2040. The trailing edge population at the low-elevation plot became locally extinct by 2017. The local population at the mid-elevation plot at the trailing edge gradually declined and is predicted to become extirpated by 2040. Population declines were associated with warming temperatures at the mid-elevation plot, although results were more equivocal at the low-elevation plot where we had fewer years of data. Population density was stable or increasing at the range core, although warming temperatures are predicted to cause population declines by 2040 at the low-elevation plot. This result suggests that even populations within the geographic core of the range are vulnerable to climate change. The demographic drivers of local population declines varied between study plots, but warming temperatures were frequently associated with declining rates of population growth and apparent survival. Declining apparent survival in our study system is likely to be associated with increased adult emigration away from poor-quality habitats. Our results suggest that demographic responses to warming temperatures are complex and dependent on local conditions and geographic range position, but spatial variation in population declines is consistent with the climate-mediated range shift hypothesis. Local populations of black-throated blue warblers near the warm-edge range boundary at low latitudes and low elevations are likely to be the most vulnerable to climate change, potentially leading to local extirpation and range contractions.
RESUMO
Although long-distance migratory songbirds are widely believed to be at risk from warming temperature trends, species capable of attempting more than one brood in a breeding season could benefit from extended breeding seasons in warmer springs. To evaluate local and global factors affecting population dynamics of the black-throated blue warbler (Setophaga caerulescens), a double-brooded long-distance migrant, we used Pradel models to analyze 25 years of mark-recapture data collected in New Hampshire, USA. We assessed the effects of spring temperature (local weather) and the El Niño Southern Oscillation index (a global climate cycle), as well as predator abundance, insect biomass, and local conspecific density on population growth in the subsequent year. Local and global climatic conditions affected warbler populations in different ways. We found that warbler population growth was lower following El Niño years (which have been linked to poor survival in the wintering grounds and low fledging weights in the breeding grounds) than La Niña years. At a local scale, populations increased following years with warm springs and abundant late-season food, but were unaffected by spring temperature following years when food was scarce. These results indicate that the warming temperature trends might have a positive effect on recruitment and population growth of black-throated blue warblers if food abundance is sustained in breeding areas. In contrast, potential intensification of future El Niño events could negatively impact vital rates and populations of this species.
Assuntos
Clima , Modelos Teóricos , Dinâmica Populacional , Aves Canoras , Migração Animal , Animais , Mudança Climática , Feminino , Alimentos , Masculino , New Hampshire , Estações do Ano , TemperaturaRESUMO
Our understanding of when natural populations are regulated during their annual cycle is limited, particularly for migratory species. This information is needed for parametrizing models that can inform management and conservation. Here, we use 14 years of data on colour-marked birds to investigate how conspecific density and habitat quality during the tropical non-breeding period interact to affect body condition and apparent annual survival of a long-distance migratory songbird, the American redstart (Setophagaruticilla). Body condition and survival of birds in high-quality mangrove habitat declined as density increased. By contrast, body condition improved and survival did not vary as density increased in adjacent, lower quality scrub habitat, although mean condition and survival were almost always lower than in mangrove. High rainfall enhanced body condition in scrub but not in mangrove, suggesting factors such as food availability outweighed consequences of crowding in lower quality habitat. Thus, survival of overwintering redstarts in mangrove habitat, disproportionately males,appears to be regulated by a crowding mechanism based on density-dependent resource competition. Survival of individuals in scrub, mostly females, appears to be limited by density-independent environmental factors but not regulated by crowding. The contrasting effects of density and food limitation on individuals overwintering in adjacent habitats illustrate the complexity of processes operating during the non-breeding period for migratory animals, and emphasize the need for long-term studies of animals in multiple habitats and throughout their annual cycles.
Assuntos
Migração Animal , Ecossistema , Aves Canoras/fisiologia , Animais , Feminino , Jamaica , Masculino , Densidade Demográfica , Reprodução , Estações do AnoRESUMO
Numerous anthropogenic activities threaten the biodiversity found on earth. Because all ecological communities constantly experience temporal turnover due to natural processes, it is important to distinguish between change due to anthropogenic impact and the underlying natural rate of change. In this study, we used data sets on breeding bird communities that covered at least 20 consecutive years, from a variety of terrestrial ecosystems, to address two main questions. (1) How fast does the composition of bird communities change over time, and can we identify a baseline of natural change that distinguishes primeval systems from systems experiencing varying degrees of human impact? (2) How do patterns of temporal variation in composition vary among bird communities in ecosystems with different anthropogenic impacts? Time lag analysis (TLA) showed a pattern of increasing rate of temporal compositional change from large-scale primeval systems to disturbed and protected systems to distinctly successional systems. TLA slopes of <0.04 were typical for breeding bird communities with natural turnover, while communities subjected to anthropogenic impact were characterised by TLA slopes of >0.04. Most of the temporal variability of breeding bird communities was explained by slow changes occurring over decades, regardless of the intensity of human impact. In most of the time series, medium- and short-wave periodicity was not detected, with the exception of breeding bird communities subjected to periodic pulses (e.g. caterpillar outbreaks causing food resource peaks).
Assuntos
Aves/classificação , Animais , Biodiversidade , Ecossistema , HumanosRESUMO
The interface between field biology and technology is energizing the collection of vast quantities of environmental data. Passive acoustic monitoring, the use of unattended recording devices to capture environmental sound, is an example where technological advances have facilitated an influx of data that routinely exceeds the capacity for analysis. Computational advances, particularly the integration of machine learning approaches, will support data extraction efforts. However, the analysis and interpretation of these data will require parallel growth in conceptual and technical approaches for data analysis. Here, we use a large hand-annotated dataset to showcase analysis approaches that will become increasingly useful as datasets grow and data extraction can be partially automated.We propose and demonstrate seven technical approaches for analyzing bioacoustic data. These include the following: (1) generating species lists and descriptions of vocal variation, (2) assessing how abiotic factors (e.g., rain and wind) impact vocalization rates, (3) testing for differences in community vocalization activity across sites and habitat types, (4) quantifying the phenology of vocal activity, (5) testing for spatiotemporal correlations in vocalizations within species, (6) among species, and (7) using rarefaction analysis to quantify diversity and optimize bioacoustic sampling.To demonstrate these approaches, we sampled in 2016 and 2018 and used hand annotations of 129,866 bird vocalizations from two forests in New Hampshire, USA, including sites in the Hubbard Brook Experiment Forest where bioacoustic data could be integrated with more than 50 years of observer-based avian studies. Acoustic monitoring revealed differences in community patterns in vocalization activity between forests of different ages, as well as between nearby similar watersheds. Of numerous environmental variables that were evaluated, background noise was most clearly related to vocalization rates. The songbird community included one cluster of species where vocalization rates declined as ambient noise increased and another cluster where vocalization rates declined over the nesting season. In some common species, the number of vocalizations produced per day was correlated at scales of up to 15 km. Rarefaction analyses showed that adding sampling sites increased species detections more than adding sampling days.Although our analyses used hand-annotated data, the methods will extend readily to large-scale automated detection of vocalization events. Such data are likely to become increasingly available as autonomous recording units become more advanced, affordable, and power efficient. Passive acoustic monitoring with human or automated identification at the species level offers growing potential to complement observer-based studies of avian ecology.
RESUMO
A topic of recurring interest in ecological research is the degree to which vegetation structure influences the distribution and abundance of species. Here we test the applicability of remote sensing, particularly novel use of waveform lidar measurements, for quantifying the habitat heterogeneity of a contiguous northern hardwoods forest in the northeastern United States. We apply these results to predict the breeding habitat quality, an indicator of reproductive output of a well-studied Neotropical migrant songbird, the Black-throated Blue Warbler (Dendroica caerulescens). We found that using canopy vertical structure metrics provided unique information for models of habitat quality and spatial patterns of prevalence. An ensemble decision tree modeling approach (random forests) consistently identified lidar metrics describing the vertical distribution and complexity of canopy elements as important predictors of habitat use over multiple years. Although other aspects of habitat were important, including the seasonality of vegetation cover, the canopy structure variables provided unique and complementary information that systematically improved model predictions. We conclude that canopy structure metrics derived from waveform lidar, which will be available on future satellite missions, can advance multiple aspects of biodiversity research, and additional studies should be extended to other organisms and regions.
Assuntos
Ecossistema , Aves Canoras/fisiologia , Astronave , Migração Animal , Animais , Cruzamento , New Hampshire , Clima TropicalRESUMO
Migratory bird needs must be met during four phases of the year: breeding season, fall migration, wintering, and spring migration; thus, management may be needed during all four phases. The bulk of research and management has focused on the breeding season, although several issues remain unsettled, including the spatial extent of habitat influences on fitness and the importance of habitat on the breeding grounds used after breeding. Although detailed investigations have shed light on the ecology and population dynamics of a few avian species, knowledge is sketchy for most species. Replication of comprehensive studies is needed for multiple species across a range of areas, Information deficiencies are even greater during the wintering season, when birds require sites that provide security and food resources needed for survival and developing nutrient reserves for spring migration and, possibly, reproduction. Research is needed on many species simply to identify geographic distributions, wintering sites, habitat use, and basic ecology. Studies are complicated, however, by the mobility of birds and by sexual segregation during winter. Stable-isotope methodology has offered an opportunity to identify linkages between breeding and wintering sites, which facilitates understanding the complete annual cycle of birds. The twice-annual migrations are the poorest-understood events in a bird's life. Migration has always been a risky undertaking, with such anthropogenic features as tall buildings, towers, and wind generators adding to the risk. Species such as woodland specialists migrating through eastern North America have numerous options for pausing during migration to replenish nutrients, but some species depend on limited stopover locations. Research needs for migration include identifying pathways and timetables of migration, quality and distribution of habitats, threats posed by towers and other tall structures, and any bottlenecks for migration. Issues such as human population growth, acid deposition, climate change, and exotic diseases are global concerns with uncertain consequences to migratory birds and even less-certain remedies. Despite enormous gaps in our understanding of these birds, research, much of it occurring in the past 30 years, has provided sufficient information to make intelligent conservation efforts but needs to expand to handle future challenges.
Assuntos
Migração Animal/fisiologia , Aves/crescimento & desenvolvimento , Aves/fisiologia , Conservação dos Recursos Naturais/métodos , Animais , Modelos Teóricos , Dinâmica PopulacionalRESUMO
Synchrony in population fluctuations has been identified as an important component of population dynamics. In a previous study, we determined that local-scale (<15-km) spatial synchrony of bird populations in New England was correlated with synchronous fluctuations in lepidopteran larvae abundance and with the North Atlantic Oscillation. Here we address five questions that extend the scope of our earlier study using North American Breeding Bird Survey data. First, do bird populations in eastern North America exhibit spatial synchrony in abundances at scales beyond those we have documented previously? Second, does spatial synchrony depend on what population metric is analyzed (e.g., abundance, growth rate, or variability)? Third, is there geographic concordance in where species exhibit synchrony? Fourth, for those species that exhibit significant geographic concordance, are there landscape and habitat variables that contribute to the observed patterns? Fifth, is spatial synchrony affected by a species' life history traits? Significant spatial synchrony was common and its magnitude was dependent on the population metric analyzed. Twenty-four of 29 species examined exhibited significant synchrony in population abundance: mean local autocorrelation (rho)= 0.15; mean spatial extent (mean distance where rho=0) = 420.7 km. Five of the 29 species exhibited significant synchrony in annual population growth rate (mean local autocorrelation = 0.06, mean distance = 457.8 km). Ten of the 29 species exhibited significant synchrony in population abundance variability (mean local autocorrelation = 0.49, mean distance = 413.8 km). Analyses of landscape structure indicated that habitat variables were infrequent contributors to spatial synchrony. Likewise, we detected no effects of life history traits on synchrony in population abundance or growth rate. However, short-distance migrants exhibited more spatially extensive synchrony in population variability than either year-round residents or long-distance migrants. The dissimilarity of the spatial extent of synchrony across species suggests that most populations are not regulated at similar spatial scales. The spatial scale of the population synchrony patterns we describe is likely larger than the actual scale of population regulation, and in turn, the scale of population regulation is undoubtedly larger than the scale of individual ecological requirements.
Assuntos
Aves/fisiologia , Ecossistema , Meio Ambiente , Animais , Aves/crescimento & desenvolvimento , Densidade Demográfica , Dinâmica Populacional , Crescimento Demográfico , Especificidade da EspécieRESUMO
The mechanisms regulating bird populations are poorly understood and controversial. We provide evidence that a migratory songbird, the black-throated blue warbler (Dendroica caerulescens), is regulated by multiple density-dependence mechanisms in its breeding quarters. Evidence of regulation includes: stability in population density during 1969-2002, strong density dependence in time-series analyses of this period, an inverse relationship between warbler density and annual fecundity, and a positive relationship between annual fecundity and recruitment of yearlings in the subsequent breeding season. Tests of the mechanisms causing regulation were carried out within the Hubbard Brook Experimental Forest, New Hampshire, during 1997-1999. When individuals from abutting territories were experimentally removed in a homogeneous patch of high-quality habitat, the fecundity of focal pairs nearly doubled, revealing a locally operating crowding mechanism. A site-dependence mechanism was indicated by an inverse relationship between population size and mean territory quality, as well as by greater annual fecundity on the sites that were most frequently occupied and of highest quality. These site-dependence relationships were revealed by intensive monitoring of territory quality and demography at the landscape spatial scale. Crowding and site-dependence mechanisms, therefore, acted simultaneously but at different spatial scales to regulate local abundance of this migratory bird population.
Assuntos
Migração Animal/fisiologia , Ecologia , Fertilidade/fisiologia , Comportamento Sexual Animal/fisiologia , Aves Canoras/fisiologia , Animais , New Hampshire , Densidade Demográfica , Dinâmica Populacional , TerritorialidadeRESUMO
Birds searching for insects in the canopy of a northern hardwoods forest depart significantly from random in their use of tree species, even when these trees are generally similar in life form. All 10 foliage-dwelling bird species in the Hubbard Brook forest showed preferences for Yellow Birch, most had an aversion to Beech and Sugar Maple, and a few had special preferences for conifers or White Ash. Birds that glean prey from leaves had stronger tree species preferences than those that often hover for their prey, and were more influenced by tree species differences in foliage structure. The less common bird species and those for which northern hardwoods are marginal habitat had the most pronounced tree-species preferences. Food densities which are higher on Yellow Birch and specific adaptations to foraging in trees with particular foliage structures are considered major factors responsible for the observed tree species preferences. The implications of these findings for bird community structure and for forest management practices are discussed.
RESUMO
We investigated natural variations in the stable isotopic composition of strontium (a surrogate for calcium) in the bones of a single species of breeding migratory songbird, as well as in their eggshells, egg contents, and food sources. We use this information to determine the sources of calcium to these migratory songbirds and their offspring. Samples were collected from two locations in the northeastern USA (Hubbard Brook, NH, and Downer Forest, VT.) that differed in soil geochemistry. The mean 87Sr/86Sr ratios of food items (caterpillars and snails), eggshells, and egg contents were indistinguishable within each site, but significantly different between the two sites. Mean 87Sr/86Sr ratios for the bones of adult females were significantly different between the two sites, but values were significantly lower than those of food items and eggshells at each site. Two of four adult individuals studied at each site had 87Sr/86Sr ratios lower than the entire range of values for local food sources. Mixing calculations indicate that up to 60% of skeletal strontium and calcium was derived from foods consumed in the winter grounds where lower 87Sr/86Sr ratios predominate. At each study site, the 87Sr/86Sr ratio of eggshells differed significantly between clutches, but the mean clutch 87Sr/86Sr ratios were unrelated to the skeletal 87Sr/86Sr ratio of the laying adult. These findings suggest that strontium (and hence calcium) for eggshell production in this species is derived predominantly from local food sources in breeding areas. Thus, reductions in available calcium in northern temperate ecosystems due to the influences of acid deposition could be potentially harmful to this and other species of migratory bird.
RESUMO
. Insectivorous birds have been shown to have direct effects on abundances of herbivorous arthropods, but few studies have tested the indirect effects of birds on plant performance through consumption of herbivorous insects. In a 3-year study at the Hubbard Brook Experimental Forest, New Hampshire, we tested whether bird predation indirectly affects leaf herbivory levels and leaf and shoot biomass production of understory sugar maple (Acer saccharum) saplings. Trees were randomly assigned to one of four treatments: an insecticide application to reduce herbivory levels, exclosures that prevented bird access, addition of Lepidoptera larvae, and controls. Trees sprayed with an insecticide supported significantly fewer Lepidoptera larvae than other treatments throughout the study. Also, trees in exclosures supported more Lepidoptera larvae than controls during one count each year, and pooled across all counts during the second year. As predicted, the mean proportion of leaf area consumed varied significantly among treatments and was least in the insecticide treatment, followed by controls, exclosures, and Lepidoptera additions. Significant differences among treatments in herbivory levels, however, did not lead to differences in leaf or shoot biomass production. Thus, bird predation decreased Lepidoptera abundances and decreased herbivory levels, but did not increase biomass production during the following year. Over 85% of the herbivores in our study were Homoptera nymphs that were not folivorous and are not important bird prey items, potentially dampening the indirect effects of bird predation on biomass production. A comparison of these results with previous studies suggests that the indirect effects of bird predation on plant biomass production may depend on the plant species, abundance and composition of the herbivore community, and primary productivity of the ecosystem.
RESUMO
Numerous studies have correlated the advancement of lay date in birds with warming climate trends, yet the fitness effects associated with this phenological response have been examined in only a small number of species. Most of these species--primarily insectivorous cavity nesters in Europe--exhibit fitness declines associated with increasing asynchrony with prey. Here, we use 25 years of demographic data, collected from 1986 to 2010, to examine the effects of spring temperature on breeding initiation date, double brooding, and annual fecundity in a Nearctic-Neotropical migratory songbird, the black-throated blue warbler (Setophaga caerulescens). Data were collected from birds breeding at the Hubbard Brook Experimental Forest, New Hampshire, USA, where long-term trends toward warmer springs have been recorded. We found that black-throated blue warblers initiated breeding earlier in warmer springs, that early breeders were more likely to attempt a second brood than those starting later in the season, and that double brooding and lay date were linked to higher annual fecundity. Accordingly, we found selection favored earlier breeding in most years. However, in contrast to studies of several other long-distance migratory species in Europe, this selection pressure was not stronger in warmer springs, indicating that these warblers were able to adjust mean lay date appropriately to substantial inter-annual variation in spring temperature. Our results suggest that this North American migratory songbird might not experience the same fecundity declines as songbirds that are unable to adjust their timing of breeding in pace with spring temperatures.
Assuntos
Migração Animal , Reprodução/fisiologia , Estações do Ano , Aves Canoras/fisiologia , Temperatura , Animais , Feminino , Masculino , New HampshireRESUMO
As tropical forests are cleared, a greater proportion of migratory songbirds are forced to winter in agricultural and disturbed habitats, which, if poorer in quality than natural forests, could contribute to population declines. We compared demographic indicators of habitat quality for a focal species, the American Redstart (Setophaga ruticilla), wintering in Jamaican citrus orchards and shade coffee plantations with those in four natural habitats: mangrove, coastal scrub, coastal palm, and dry limestone forests. Demographic measures of habitat quality included density, age and sex ratio, apparent survival, and changes in body mass. Measures of habitat quality for redstarts in citrus and coffee habitats were generally intermediate between the highest (mangrove) and lowest (dry limestone) measurements from natural habitats. The decline in mean body mass over the winter period was a strong predictor of annual survival rate among habitats, and we suggest that measures of body condition coupled with survival data provide the best measures of habitat quality for nonbreeding songbirds. Density, which is far easier to estimate, was correlated with these more labor-intensive measures, particularly in the late winter when food is likely most limiting. Thus, local density may be useful as an approximation of habitat quality for wintering migrant warblers. Our findings bolster those of previous studies based on bird abundance that suggest arboreal agricultural habitats in the tropics can be useful for the conservation of generalist, insectivorous birds, including many migratory passerines such as redstarts.