Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biol ; 108(3): 1115-25, 1989 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-2537833

RESUMO

High levels of the neuron-specific protein kinase C substrate, B-50 (= GAP43), are present in neurites and growth cones during neuronal development and regeneration. This suggests a hitherto nonelucidated role of this protein in neurite outgrowth. Comparable high levels of B-50 arise in the pheochromocytoma PC12 cell line during neurite formation. To get insight in the putative growth-associated function of B-50, we compared its ultrastructural localization in naive PC12 cells with its distribution in nerve growth factor (NGF)- or dibutyryl cyclic AMP (dbcAMP)-treated PC12 cells. B-50 immunogold labeling of cryosections of untreated PC12 cells is mainly associated with lysosomal structures, including multivesicular bodies, secondary lysosomes, and Golgi apparatus. The plasma membrane is virtually devoid of label. However, after 48-h NGF treatment of the cells, B-50 immunoreactivity is most pronounced on the plasma membrane. Highest B-50 immunoreactivity is observed on plasma membranes surrounding sprouting microvilli, lamellipodia, and filopodia. Outgrowing neurites are scattered with B-50 labeling, which is partially associated with chromaffin granules. In NGF-differentiated PC12 cells, B-50 immunoreactivity is, as in untreated cells, also associated with organelles of the lysosomal family and Golgi stacks. B-50 distribution in dbcAMP-differentiated cells closely resembles that in NGF-treated cells. The altered distribution of B-50 immunoreactivity induced by differentiating agents indicates a shift of the B-50 protein towards the plasma membrane. This translocation accompanies the acquisition of neuronal features of PC12 cells and points to a neurite growth-associated role for B-50, performed at the plasma membrane at the site of protrusion.


Assuntos
Proteínas de Membrana/análise , Fatores de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso/análise , Neurônios/análise , Feocromocitoma/análise , Animais , Axônios/análise , Bucladesina/farmacologia , Diferenciação Celular , Linhagem Celular , Membrana Celular/análise , Sistema Cromafim/análise , Sistema Cromafim/citologia , Sistema Cromafim/ultraestrutura , Proteína GAP-43 , Complexo de Golgi/análise , Imuno-Histoquímica , Lisossomos/análise , Microscopia Eletrônica , Microvilosidades/análise , Neurônios/ultraestrutura , Feocromocitoma/ultraestrutura , Pseudópodes/análise
2.
Mol Biol Cell ; 9(12): 3383-97, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9843576

RESUMO

Tlg1p and Tlg2p, members of the syntaxin family of SNAREs in yeast, have been implicated in both endocytosis and the retention of late Golgi markers. We have investigated the functions of these and the other endocytic syntaxins Pep12p and Vam3p. Remarkably, growth is possible in the absence of all four proteins. In the absence of the others, Pep12p and Tlg1p can each create endosomes accessible to the endocytic tracer dye FM4-64. However, although Pep12p is required for the ligand-induced internalization of the alpha factor receptor and its passage via Pep12p-containing membranes to the vacuole, Tlg1p is not. In contrast, Tlg1p is required for the efficient localization of the catalytic subunit of chitin synthase III (Chs3p) to the bud neck, a process that involves endocytosis and polarized delivery of Chs3p. In wild-type cells, internalized Chs3p cofractionates with Tlg1p and Tlg2p, and in a strain lacking the other endocytic syntaxins, either Tlg1p or Tlg2p is sufficient for correct localization of the enzyme. Pep12p is neither necessary nor sufficient for this process. We conclude that there are two endocytic routes in yeast that can operate independently and that Tlg1p is located at the junction of one of these with the polarized exocytic pathway.


Assuntos
Quitina Sintase/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular , Transporte Biológico Ativo , Polaridade Celular , Endocitose , Endossomos/metabolismo , Exocitose , Complexo de Golgi/metabolismo , Fusão de Membrana , Microscopia Eletrônica , Proteínas Qa-SNARE , Proteínas SNARE , Saccharomyces cerevisiae/citologia
3.
Biochim Biophys Acta ; 1486(1): 145-70, 2000 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-10856719

RESUMO

Sphingolipids constitute a sizeable fraction of the membrane lipids in all eukaryotes and are indispensable for eukaryotic life. First of all, the involvement of sphingolipids in organizing the lateral domain structure of membranes appears essential for processes like protein sorting and membrane signaling. In addition, recognition events between complex glycosphingolipids and glycoproteins are thought to be required for tissue differentiation in higher eukaryotes and for other specific cell interactions. Finally, upon certain stimuli like stress or receptor activation, sphingolipids give rise to a variety of second messengers with effects on cellular homeostasis. All sphingolipid actions are governed by their local concentration. The intricate control of their intracellular topology by the proteins responsible for their synthesis, hydrolysis and intracellular transport is the topic of this review.


Assuntos
Membrana Celular/metabolismo , Esfingolipídeos/metabolismo , Animais , Transporte Biológico , Difusão , Membrana Eritrocítica/metabolismo , Células Eucarióticas , Evolução Molecular , Glicoesfingolipídeos/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Fígado/metabolismo , Fosfatidilcolinas/metabolismo , Sistemas do Segundo Mensageiro , Esfingolipídeos/química , Esfingomielinas/metabolismo , Frações Subcelulares/metabolismo
4.
Biochim Biophys Acta ; 1219(1): 184-8, 1994 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-8086462

RESUMO

Sea urchin fascin and the Drosophila singed gene product form a unique class of actin cross-linking proteins involved in the bundling of filamentous actin by an as yet unknown mechanism. From a Xenopus laevis intermediate pituitary cDNA library we have isolated a cDNA encoding a 53-kDa protein that shares approximately 36% amino acid sequence identity with both fascin and the singed gene product, and thus likely represents a vertebrate homolog of these actin-bundling proteins. RNase-protection experiments revealed that in Xenopus the gene is expressed in a wide variety of tissues but with the highest levels of expression in oocytes and testis. This raises the possibility that fascin has a role in microfilament dynamics associated with the formation and/or fertilization of vertebrate germ cells.


Assuntos
Proteínas de Transporte/genética , Proteínas dos Microfilamentos/genética , Xenopus laevis/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/genética , Feminino , Biblioteca Gênica , Masculino , Dados de Sequência Molecular , Oócitos/fisiologia , Hipófise/fisiologia , Homologia de Sequência de Aminoácidos , Testículo/fisiologia , Distribuição Tecidual
5.
Eur J Cell Biol ; 77(4): 263-8, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9930650

RESUMO

SNAREs are compartmentally specific membrane proteins required for intracellular membrane fusion. Homologues of the Saccharomyces cerevisiae protein Sec1p interact with, and are likely to be involved in regulation of, the syntaxin family of SNAREs. In yeast there are 7 functionally distinct syntaxins but only four clearly identifiable homologues of Sec1p. One of these, Vps45p, is required for transport from Golgi to late endosomes, and has been implicated in the function of the late endosomal syntaxin Pep12p. However, there is evidence that not all the functions of Pep12p are equally dependent on Vps45p, and conversely that the phenotypes of vps45 mutants cannot be explained entirely by loss of Pep12p activity. We have recently characterised two yeast syntaxins which function in trans-Golgi or endosomal compartments, Tlg1p and Tlg2p. We show here that the principal binding site for Vps45p on intracellular membranes is provided by Tlg2p rather than Pep12p, and that Vps45p is required for stable expression of Tlg2p. Vps45p is also associated with Tlg1p as part of a triple complex containing both Tlg1p and Tlg2p. Since a deltavps45 deltatlg2 double mutant has a more severe vacuolar protein sorting defect than a deltatlg2 mutant, Vps45p cannot only interact with Tlg2p. It appears that the role of Vps45p in protein traffic is more complex than has previously been assumed.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte Vesicular , Animais , Proteínas de Transporte/metabolismo , Proteínas Fúngicas/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Munc18 , Proteínas do Tecido Nervoso , Proteínas Qa-SNARE , Coelhos
6.
Endocrinology ; 124(4): 2029-41, 1989 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-2538320

RESUMO

P19 EPI-7, a differentiated murine embryonal carcinoma cell line with an epithelioid morphology, does not require external growth factors for proliferation under clonal and subconfluent conditions. At saturation density, however, cells become quiescent in the G1/G0 phase of the cell cycle from which they can be restimulated, particularly upon addition of epidermal growth factor. Medium conditioned by confluent P19 EPI-7 cultures is able to enhance clonal outgrowth of this cell line, suggesting that autocrine growth factor loops may be acting in these cells. Analysis of conditioned serum-free medium shows that this cell line produces a platelet-derived growth factor-like growth factor, next to a type beta transforming growth factor and large amounts of insulin-like growth factor II (IGF-II) and an IGF-binding protein with high specificity for IGF-II. This latter observation has been confirmed by the use of a specific bioassay for IGFs, based on their ability to specifically stimulate proliferation of MCF-7 human breast cancer cells. The amount of IGF-II produced (0.5 mg/liter conditioned medium) makes P19 EPI-7 one of the best producing cell lines for this factor described so far. Receptor cross-linking analysis shows that this cell line contains IGF-I receptors, but no specific receptors for IGF-II. Depending on the conditions tested, transforming growth factor-beta 1 either act as a growth-stimulating factor or as a strong growth inhibitory factor. These data demonstrate that upon cellular differentiation, embryonal carcinoma cells can be formed which produce polypeptide growth factors and are also able to respond to such factors. These observations are discussed in the light of the role of autocrine and paracrine growth stimulation processes during early murine development.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Somatomedinas/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Animais , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Meios de Cultura/análise , Células-Tronco de Carcinoma Embrionário , Camundongos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/ultraestrutura , Fator de Crescimento Derivado de Plaquetas/farmacologia , Fator de Crescimento Derivado de Plaquetas/fisiologia , Receptores de Superfície Celular/análise , Receptores de Superfície Celular/metabolismo , Receptores de Somatomedina , Somatomedinas/farmacologia , Somatomedinas/fisiologia , Teratoma/patologia , Fatores de Crescimento Transformadores/farmacologia , Fatores de Crescimento Transformadores/fisiologia , Células Tumorais Cultivadas
7.
J Neurochem ; 66(6): 2248-56, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-8632145

RESUMO

Chromogranins and secretogranins are acidic secretory proteins of unknown function that represent major constituents of neuroendocrine secretary granules. Using a differential screening strategy designed to identify genes involved in peptide hormone biosynthesis and secretion, we have isolated cDNA clones encoding the first nonmammalian homologues of secretogranin II (SgII) and secretogranin III (SgIII) from a Xenopus intermediate pituitary cDNA library. A comparative analysis of the Xenopus and mammalian proteins revealed a striking regional conservation with an overall sequence identity of 48% for SgII and 61% for SgIII. One of the highly conserved and thus potentially functional domains in SgII corresponds to the bioactive peptide secretoneurin. However, in SgII and especially in SgIII, a substantial portion of the potential dibasic cleavage sites is not conserved, arguing against the idea that these granins serve solely as peptide precursors. Moreover, SgIII contains a conserved and repeated motif (DSTK) that is reminiscent of a repeat present in the trans-Golgi network integral membrane proteins TGN38 and TGN41, a finding more consistent with an intracellular function for this protein. When Xenopus intermediate pituitary cells were stimulated in vivo, the mRNA levels of SgII and SgIII increased dramatically (15- and 35-fold, respectively) and in parallel with that of the prohormone proopiomelanocortin (30-fold increase). Our results indicate that the process of peptide hormone production and release in a neuroendocrine cell involves multiple members of the granin family.


Assuntos
Regulação da Expressão Gênica , Hipófise/fisiologia , Pró-Opiomelanocortina/genética , Proteínas/genética , Xenopus laevis/genética , Adaptação Fisiológica/genética , Animais , Sequência de Bases , Northern Blotting , Cromograninas , Sequência Conservada , DNA Complementar/isolamento & purificação , Regulação da Expressão Gênica/fisiologia , Dados de Sequência Molecular , Sistemas Neurossecretores/fisiologia , RNA Mensageiro/fisiologia , Homologia de Sequência de Aminoácidos , Transcrição Gênica/fisiologia
8.
J Biol Chem ; 271(30): 17755-60, 1996 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-8663421

RESUMO

Secretogranin III (SgIII) is an acidic protein of unknown function that is present in the storage vesicles of many neuroendocrine cells. It is coexpressed with the prohormone proopiomelanocortin in the intermediate pituitary of Xenopus laevis. We developed an antiserum to investigate the biosynthesis of SgIII in pulse-chase incubated Xenopus neurointermediate lobes. SgIII was synthesized as a 61- or 63-kDa (N-glycosylated) protein and processed to a 48-kDa form which, in turn, was partially cleaved to fragments of 28 and 20 kDa. The 48-, 28-, and 20-kDa cleavage products, but not their precursors, were secreted. This secretion is regulated and can be blocked in parallel with that of proopiomelanocortin-derived peptides by the hypothalamic factors dopamine, gamma-aminobutyric acid, and neuropeptide Y. Coexpression of Xenopus SgIII with prohormone convertase (PC)1 or PC2 in transfected fibroblasts was sufficient to reconstitute the processing events observed in the neurointermediate lobes. Site-directed mutagenesis revealed that Xenopus SgIII is cleaved at two dibasic sites, namely Lys68-Arg69 and Arg237-Arg238. Pulse-chase incubations of lobes with Na2[35S]SO4 showed that SgIII is sulfated in the trans-Golgi network before it is processed. Finally, SgIII processing was found in several neuroendocrine cell types from various species. We conclude that SgIII is a precursor protein and that the intact molecule can only have an intracellular function, whereas an extracellular role can only be attributed to its cleavage products.


Assuntos
Hipófise/metabolismo , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Ésteres do Ácido Sulfúrico/metabolismo , Adaptação Fisiológica , Animais , Ácido Aspártico Endopeptidases/metabolismo , Sequência de Bases , Compartimento Celular , Linhagem Celular , Cromograninas , Cor , Glândulas Endócrinas/metabolismo , Hormônios Estimuladores de Melanócitos/metabolismo , Camundongos , Dados de Sequência Molecular , Neurônios/metabolismo , Hipófise/citologia , Pró-Proteína Convertase 2 , Pró-Proteína Convertases , Subtilisinas/metabolismo , Xenopus laevis
9.
J Cell Sci ; 108 ( Pt 10): 3295-305, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-7593290

RESUMO

The biosynthetic machinery in the melanotrope cells of the Xenopus intermediate pituitary is primarily dedicated to the generation of proopiomelanocortin (POMC)-derived, melanophore-stimulating peptides. Transfer of the animal to a black background stimulates the production of these peptides and causes a dramatic increase in POMC mRNA levels. To identify genes involved in the biosynthesis and regulated release of peptide hormones, we differentially screened an intermediate pituitary cDNA library of toads adapted to a black background with cDNA probes derived from intermediate pituitary mRNA of black- and white-adapted animals. Here we report the identification of twelve distinct genes whose expression levels in the melanotropes are regulated in coordination with that of POMC. Four of these genes are novel while the others code for translocon-associated proteins, a lumenal cysteine protease of the endoplasmic reticulum, prohormone-processing enzymes, members of the granin family and a transmembrane protein presumably involved in the assembly and/or specific functioning of vacuolar H(+)-ATPase from secretory granules. Our results indicate that a wide variety of both soluble and membrane-associated components of the secretory pathway is recruited in physiologically activated, peptide hormone-producing cells.


Assuntos
Pró-Opiomelanocortina/metabolismo , Xenopus/metabolismo , Sequência de Aminoácidos , Animais , DNA Complementar/análise , DNA Complementar/genética , Regulação da Expressão Gênica , Técnicas de Sonda Molecular , Dados de Sequência Molecular , Pró-Opiomelanocortina/genética , ATPases Translocadoras de Prótons/metabolismo , RNA Mensageiro/biossíntese
10.
J Cell Sci ; 111 ( Pt 20): 2999-3006, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9739073

RESUMO

Ac45 is a type I transmembrane protein associated with vacuolar H+-ATPase, a proton pump mediating the acidification of multiple intracellular organelles. In this study, we examined the intracellular routing of Ac45 in transfected CV-1 fibroblasts. Steady state immunolabeling showed that Ac45 is located on the plasma membrane and in a vacuolar compartment in the juxtanuclear region. Antibody internalization experiments revealed that Ac45 is rapidly retrieved from the cell surface and is targeted to the vacuolar structures. The 26-residue cytoplasmic tail of Ac45 was intrinsically capable of mediating endocytosis of the cell surface protein Tac, indicating that the tail contains an autonomous internalization signal. Immunolocalization studies on cells expressing carboxy-terminally truncated Ac45 mutants showed the presence of essential routing information in the membrane-distal region of the cytoplasmic tail. Further mutational analysis of this region, which lacks the recognized tyrosine- or di-leucine-based sorting motifs, suggested that multiple sites rather than a short linear sequence are responsible for the internalization. Collectively, our results indicate that the cytoplasmic tail of Ac45 contains autonomous targeting information distinct from previously described routing determinants.


Assuntos
Membrana Celular/enzimologia , Proteínas de Membrana/metabolismo , ATPases Translocadoras de Prótons/metabolismo , ATPases Vacuolares Próton-Translocadoras , Vacúolos/enzimologia , Proteínas de Xenopus , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Transporte Biológico , Linhagem Celular , Citoplasma/enzimologia , Análise Mutacional de DNA , Endocitose , Membranas Intracelulares/enzimologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Sinais Direcionadores de Proteínas , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , Receptores de Interleucina-2/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
11.
Biochem J ; 312 ( Pt 1): 205-13, 1995 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-7492314

RESUMO

In the intermediate pituitary gland of Xenopus laevis, the expression levels of the prohormone pro-opiomelanocortin (POMC) can be readily manipulated. When the animal is placed on a black background, the gene for POMC is actively transcribed, whereas on a white background the gene is virtually inactive. In this study, we characterized two genes whose transcript levels in the intermediate pituitary are regulated in coordination with that for POMC. One of these codes for a protein homologous to translocon-associated protein TRAP delta, a subunit of a transmembrane protein complex located at the site where nascent secretory proteins enter the endoplasmic reticulum (ER). Both Xenopus and mice were found to express an alternatively spliced transcript that gives rise to a previously unknown version of the TRAP delta protein. The product of the second gene is a novel and highly conserved protein with structural similarity to glycoprotein gp25L, a constituent of another translocon-associated protein complex. A database search revealed the existence of a novel family of gp25L-related proteins whose members occur throughout the animal kingdom. Together, our data imply that (i) the group of ER proteins surrounding translocating polypeptide chains may be far more complex than previously expected, and (ii) a number of the accessory components of the translocon participate in early steps of prohormone biosynthesis.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Glicoproteínas de Membrana/genética , Hipófise/metabolismo , Pró-Opiomelanocortina/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores de Peptídeos/genética , Adaptação Fisiológica , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Ligação ao Cálcio/química , Clonagem Molecular , Primers do DNA , DNA Complementar/química , DNA Complementar/genética , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Regulação da Expressão Gênica/genética , Glicoproteínas de Membrana/química , Dados de Sequência Molecular , Família Multigênica , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/genética , Receptores Citoplasmáticos e Nucleares/química , Receptores de Peptídeos/química , Ribonucleases/metabolismo , Alinhamento de Sequência , Xenopus laevis
12.
Physiol Rev ; 81(4): 1689-723, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11581500

RESUMO

Eukaryotes are characterized by endomembranes that are connected by vesicular transport along secretory and endocytic pathways. The compositional differences between the various cellular membranes are maintained by sorting events, and it has long been believed that sorting is based solely on protein-protein interactions. However, the central sorting station along the secretory pathway is the Golgi apparatus, and this is the site of synthesis of the sphingolipids. Sphingolipids are essential for eukaryotic life, and this review ascribes the sorting power of the Golgi to its capability to act as a distillation apparatus for sphingolipids and cholesterol. As Golgi cisternae mature, ongoing sphingolipid synthesis attracts endoplasmic reticulum-derived cholesterol and drives a fluid-fluid lipid phase separation that segregates sphingolipids and sterols from unsaturated glycerolipids into lateral domains. While sphingolipid domains move forward, unsaturated glycerolipids are retrieved by recycling vesicles budding from the sphingolipid-poor environment. We hypothesize that by this mechanism, the composition of the sphingolipid domains, and the surrounding membrane changes along the cis-trans axis. At the same time the membrane thickens. These features are recognized by a number of membrane proteins that as a consequence of partitioning between domain and environment follow the domains but can enter recycling vesicles at any stage of the pathway. The interplay between protein- and lipid-mediated sorting is discussed.


Assuntos
Complexo de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Transporte Proteico/fisiologia , Esfingolipídeos/metabolismo , Animais , Polaridade Celular , Humanos , Membranas Intracelulares/química , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Estrutura Molecular , Transdução de Sinais/fisiologia , Esfingolipídeos/química , Esfingolipídeos/genética
13.
Traffic ; 1(3): 226-34, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11208106

RESUMO

Membrane lipids do not spontaneously exchange between the two leaflets of lipid bilayers because the polar headgroups cannot cross the hydrophobic membrane interior. Cellular membranes, notably eukaryotic plasma membranes, are equipped with special proteins that actively translocate lipids from one leaflet to the other. In addition, cellular membranes contain proteins that facilitate a passive equilibration of lipids between the two membrane halves. In recent years, a growing number of proteins have been put forward as lipid translocators or facilitators. Unexpectedly, some of these appear to be required for efficient translocation of lipids lacking bulky headgroups, like cholesterol and fatty acids. The candidate lipid translocators identified so far belong to large protein families whose other members include pumps for amphiphilic molecules like bile salts and drugs.


Assuntos
Proteínas de Transporte/metabolismo , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transferência de Fosfolipídeos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico Ativo , Proteínas de Transporte/genética , Fenômenos Químicos , Físico-Química , Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Ácidos Graxos/metabolismo , Complexo de Golgi/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Proteínas de Membrana/genética , Modelos Biológicos , Modelos Moleculares , Estrutura Molecular , Família Multigênica
14.
EMBO J ; 17(1): 113-26, 1998 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-9427746

RESUMO

Intracellular membrane traffic is thought to be regulated in part by SNAREs, integral membrane proteins on transport vesicles (v-SNAREs) and target organelles (t-SNAREs) that bind to each other and mediate bilayer fusion. All known SNARE-mediated fusion events involve a member of the syntaxin family of t-SNAREs. Sequence comparisons identify eight such proteins encoded in the yeast genome, of which six have been characterized. We describe here the remaining two, Tlg1p and Tlg2p. These have the expected biochemical properties of t-SNAREs, and are located in separable compartments which correspond to a putative early endosome and the yeast equivalent of the TGN, respectively. They co-precipitate with the v-SNARE Vti1p, which is implicated in Golgi-endosome traffic and, remarkably, binds to five different syntaxins. Tlg1p also binds the plasma membrane v-SNARE Snc1p. Both Tlg1p and Tlg2p are required for efficient endocytosis and to maintain normal levels of TGN proteins. However, neither is required for intra-Golgi traffic. Since no further syntaxins have been identified in yeast, this implies that the Golgi apparatus can function with a single syntaxin, Sed5p.


Assuntos
Endossomos/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Endocitose , Endossomos/ultraestrutura , Proteínas Fúngicas/metabolismo , Complexo de Golgi/ultraestrutura , Proteínas de Membrana/química , Microscopia Eletrônica , Dados de Sequência Molecular , Fenótipo , Proteínas Qa-SNARE , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
15.
Eur J Biochem ; 267(17): 5646-54, 2000 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10951226

RESUMO

Vacuolar H+-ATPases (V-ATPases) are multisubunit enzymes that acidify various intracellular organelles, including secretory pathway compartments. We have examined the effects of the specific V-ATPase inhibitor bafilomycin A1 (Baf) on the intracellular transport, sorting, processing and release of a number of neuroendocrine secretory proteins in primary Xenopus intermediate pituitary cells. Ultrastructural examination of Baf-treated intermediate pituitary cells revealed a reduction in the amount of small dense-core secretory granules and the appearance of vacuolar structures in the trans-Golgi area. Pulse-chase incubations in combination with immunoprecipitation analysis showed that in treated cells, the proteolytic processing of the newly synthesized prohormone proopiomelanocortin, prohormone convertase PC2 and secretogranin III (SgIII) was inhibited, and an intracellular accumulation of intact precursor forms and intermediate cleavage products became apparent. Moreover, we found that treated cells secreted considerable amounts of a PC2 processing intermediate and unprocessed SgIII in a constitutive fashion. Collectively, these data indicate that in the secretory pathway, V-ATPases play an important role in creating the microenvironment that is essential for proper transport, sorting, processing and release of regulated secretory proteins.


Assuntos
Endocitose , Macrolídeos , Proteínas/metabolismo , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Vacuolares Próton-Translocadoras , Animais , Antibacterianos/metabolismo , Compartimento Celular , Complexo de Golgi/metabolismo , Hidrólise , Hipófise/citologia , Hipófise/enzimologia , Hipófise/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Xenopus laevis
16.
Eur J Biochem ; 262(2): 484-91, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10336633

RESUMO

Vacuolar H+-ATPases (V-ATPases) mediate the acidification of multiple intracellular compartments, including secretory granules in which an acidic milieu is necessary for prohormone processing. A search for genes coordinately expressed with the prohormone proopiomelanocortin (POMC) in the melanotrope cells of Xenopus intermediate pituitary led to the isolation of a cDNA encoding the complete amino-acid sequence of the type I transmembrane V-ATPase accessory subunit Ac45 (predicted size 48 kDa). Comparison of Xenopus and mammalian Ac45 sequences revealed conserved regions in the protein that may be of functional importance. Western blot analysis showed that immunoreactive Ac45 represents a approximately 40-kDa product that is expressed predominantly in neuroendocrine tissues; deglycosylation resulted in a approximately 27-kDa immunoreactive Ac45 product which is smaller than predicted for the intact protein. Biosynthetic studies revealed that newly synthesized Xenopus Ac45 is an N-glycosylated protein of approximately 60 kDa; the nonglycosylated, newly synthesized form is approximately 46 kDa which is similar to the predicted size. Immunocytochemical analysis showed that in Xenopus pituitary, Ac45 is highly expressed in the biosynthetically active melanotrope cells. We conclude that the regionally conserved Xenopus Ac45 protein is synthesized as an N-glycosylated approximately 60-kDa precursor that is intracellularly cleaved to an approximately 40-kDa product and speculate that it may assist in the V-ATPase-mediated acidification of neuroendocrine secretory granules.


Assuntos
Hipófise/enzimologia , ATPases Translocadoras de Prótons/biossíntese , ATPases Vacuolares Próton-Translocadoras , Sequência de Aminoácidos , Animais , Sequência de Bases , Evolução Biológica , Western Blotting , Clonagem Molecular , DNA Complementar , Humanos , Hidrólise , Imuno-Histoquímica , Dados de Sequência Molecular , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Homologia de Sequência de Aminoácidos , Transfecção , Xenopus laevis
17.
Artigo em Inglês | MEDLINE | ID: mdl-7994377

RESUMO

Modification of hemoglobin (Hb) by crosslinking and polymerization results in an improved oxygen release capacity and a prolonged vascular retention time. Modification improves the efficacy and prevents certain side effects. It eliminates leakage of Hb through the kidneys and accumulation in the tubuli. Another important issue is the degree of purification of Hb solutions. Traces of membrane fragments may cause immunogenic and thrombogenic side effects. To determine the contamination with erythrocyte membrane fragments, we developed assays for glycophorin-alpha and phospholipids. Special models were evaluated for testing the maximum allowable level of membrane contamination. As an in vitro model for thrombogenicity we used confluent monolayers of human umbilical vein endothelial cells. These cells were incubated with Hb solutions and subsequently tested on tissue factor (TF) procoagulant activity. TF was tested by the factor VII-catalyzed activation of factor X. The lower detection limit of this assay for endotoxin was 0.5 ng/ml. Hb did not cause any tissue factor expression even after prolonged incubation. No cooperation was found within endotoxin. As an in vivo test on thrombogenicity we developed a guinea pig model in which we can follow the generation of fibrinopeptide A (FPA). This is one of the most sensitive markers for thrombin activation in vivo. When slightly contaminated Hb solutions (phospholipid content 2 nmol/ml) were infused in the presence of factor Xa at a dose (9 micrograms/kg) which in itself did not induce FPA generation, we observed an increase in FPA levels in the plasma from 1.2 +/- 0.4 ng/ml to 5.2 +/- 0.7 ng/ml. Factor Xa is used to mimic a stressed clinical condition with activated coagulation.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Substitutos Sanguíneos/toxicidade , Hemoglobinas/toxicidade , Trombose/etiologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/efeitos dos fármacos , Transfusão Total , Fibrinopeptídeo A/metabolismo , Cobaias , Humanos , Modelos Biológicos , Soluções
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa