Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
J Exp Biol ; 223(Pt 20)2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067354

RESUMO

Many walking insects use vision for long-distance navigation, but the influence of vision on rapid walking performance that requires close-range obstacle detection and directing the limbs towards stable footholds remains largely untested. We compared Argentine ant (Linepithema humile) workers in light versus darkness while traversing flat and uneven terrain. In darkness, ants reduced flat-ground walking speeds by only 5%. Similarly, the approach speed and time to cross a step obstacle were not significantly affected by lack of lighting. To determine whether tactile sensing might compensate for vision loss, we tracked antennal motion and observed shifts in spatiotemporal activity as a result of terrain structure but not illumination. Together, these findings suggest that vision does not impact walking performance in Argentine ant workers. Our results help contextualize eye variation across ants, including subterranean, nocturnal and eyeless species that walk in complete darkness. More broadly, our findings highlight the importance of integrating vision, proprioception and tactile sensing for robust locomotion in unstructured environments.


Assuntos
Formigas , Animais , Humanos , Caminhada
2.
Proc Biol Sci ; 286(1897): 20182901, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30963829

RESUMO

Most plant-pollinator mutualisms are generalized. As such, they are susceptible to perturbation by abundant, generalist, non-native pollinators such as the western honey bee ( Apis mellifera), which can reach high abundances and visit flowers of many plant species in their expansive introduced range. Despite the prevalence of non-native honey bees, their effects on pollination mutualisms in natural ecosystems remain incompletely understood. Here, we contrast community-level patterns of floral visitation by honey bees with that of the diverse native pollinator fauna of southern California, USA. We show that the number of honey bees visiting plant species increases much more rapidly with flower abundance than does that of non-honey bee insects, such that the percentage of all visitors represented by honey bees increases with flower abundance. Thus, honey bees could disproportionately impact the most abundantly blooming plant species and the large numbers of both specialized and generalized pollinator species that they sustain. Honey bees may preferentially exploit high-abundance floral resources because of their ability to recruit nest-mates; these foraging patterns may cause native insect species to forage on lower-abundance resources to avoid competition. Our results illustrate the importance of understanding foraging patterns of introduced pollinators in order to reveal their ecological impacts.


Assuntos
Abelhas/fisiologia , Flores/fisiologia , Polinização , Animais , Biodiversidade , California , Conservação dos Recursos Naturais , Espécies Introduzidas
3.
Proc Biol Sci ; 285(1870)2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321298

RESUMO

The western honey bee (Apis mellifera) is the most frequent floral visitor of crops worldwide, but quantitative knowledge of its role as a pollinator outside of managed habitats is largely lacking. Here we use a global dataset of 80 published plant-pollinator interaction networks as well as pollinator effectiveness measures from 34 plant species to assess the importance of A. mellifera in natural habitats. Apis mellifera is the most frequent floral visitor in natural habitats worldwide, averaging 13% of floral visits across all networks (range 0-85%), with 5% of plant species recorded as being exclusively visited by A. mellifera For 33% of the networks and 49% of plant species, however, A. mellifera visitation was never observed, illustrating that many flowering plant taxa and assemblages remain dependent on non-A. mellifera visitors for pollination. Apis mellifera visitation was higher in warmer, less variable climates and on mainland rather than island sites, but did not differ between its native and introduced ranges. With respect to single-visit pollination effectiveness, A. mellifera did not differ from the average non-A. mellifera floral visitor, though it was generally less effective than the most effective non-A. mellifera visitor. Our results argue for a deeper understanding of how A. mellifera, and potential future changes in its range and abundance, shape the ecology, evolution, and conservation of plants, pollinators, and their interactions in natural habitats.


Assuntos
Abelhas/fisiologia , Comportamento Animal/fisiologia , Ecossistema , Polinização , Animais , Produtos Agrícolas/fisiologia , Conjuntos de Dados como Assunto , Flores/fisiologia , Mel , Pólen , Análise de Regressão
4.
Ecology ; 99(5): 1194-1202, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29504667

RESUMO

The ecological effects of species introductions can change in magnitude over time, but an understanding of how and why they do so remains incompletely understood. Clarifying this issue requires consideration of how temporal variation in invader traits affects invasion impacts (e.g., through differential effects on the diversity and composition of native species assemblages). We examine the temporal dynamics of Argentine ant invasions in northern California by resurveying 202 sites first sampled 30-40 yr ago. To test how invasion impacts change over time, we estimated native ant richness and species composition at 20 riparian woodland sites that span a 30-yr invasion chronosequence. We then use these data to test how variation in two invader traits (aggression and relative abundance) is related to time since invasion and invasion impact. Native ant assemblages along the chronosequence exhibited reduced native ant richness and altered species composition (compared to uninvaded control sites), but the magnitude of these impacts was independent of time since invasion. These results are corroborated by additional temporal comparisons of native ant assemblages at riparian sites sampled 20-30 yr ago. Our findings together illustrate that the impacts of invasions can persist undiminished over at least a 30-yr time frame and remain evident at regional scales. Although neither invader trait varied with time since invasion, native ant richness declined as the relative abundance of the Argentine ant increased. This latter result supports the hypothesis that factors reducing invader abundance at particular sites can decrease invasion impacts, but also that such changes may be due to site-specific factors (e.g., abiotic conditions) that affect invader abundance rather than time since invasion per se. Future studies should attempt to differentiate factors that are intrinsic to the process of invasion (e.g., changes in invader populations) from long-term environmental changes (e.g., climate change) that represent extrinsic influences on the dynamics of invasion.


Assuntos
Formigas , Animais , California , Ecologia , Espécies Introduzidas
5.
Oecologia ; 186(1): 281-289, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29147780

RESUMO

Pollination services are compromised by habitat destruction, land-use intensification, pesticides, and introduced species. How pollination services respond to such stressors depends on the capacity of pollinator assemblages to function in the face of environmental disruption. Here, we quantify how pollination services provided to a native plant change upon removal of the non-native, western honey bee (Apis mellifera)-a numerically dominant floral visitor in the native bee-rich ecosystems of southern California. We focus on services provided to clustered tarweed (Deinandra fasciculata), a native, annual forb that benefits from outcross pollination. Across five different study sites in coastal San Diego County, tarweed flowers attracted 70 insect taxa, approximately half of which were native bees, but non-native honey bees were always the most abundant floral visitor at each site. To test the ability of the native insect fauna to provide pollination services, we performed Apis removals within experimental 0.25 m2 plots containing approximately 20 tarweed plants and compared visitation and seed set between plants in removal and paired control plots (n = 16 pairs). Even though 92% of observed floral visits to control plots were from honey bees, Apis removal reduced seed production by only 14% relative to plants in control plots. These results indicate that native insect assemblages can contribute important pollination services even in ecosystems numerically dominated by introduced pollinators.


Assuntos
Ecossistema , Polinização , Animais , Abelhas , California , Flores , Sementes
6.
Mol Ecol ; 26(6): 1608-1630, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28026894

RESUMO

The functions and compositions of symbiotic bacterial communities often correlate with host ecology. Yet cause-effect relationships and the order of symbiont vs. host change remain unclear in the face of ancient symbioses and conserved host ecology. Several groups of ants exemplify this challenge, as their low-nitrogen diets and specialized symbioses appear conserved and ancient. To address whether nitrogen-provisioning symbionts might be important in the early stages of ant trophic shifts, we studied bacteria from the Argentine ant, Linepithema humile - an invasive species that has transitioned towards greater consumption of sugar-rich, nitrogen-poor foods in parts of its introduced range. Bacteria were present at low densities in most L. humile workers, and among those yielding quality 16S rRNA amplicon sequencing data, we found just three symbionts to be common and dominant. Two, a Lactobacillus and an Acetobacteraceae species, were shared between native and introduced populations. The other, a Rickettsia, was found only in two introduced supercolonies. Across an eight-year period of trophic reduction in one introduced population, we found no change in symbionts, arguing against a relationship between natural dietary change and microbiome composition. Overall, our findings thus argue against major changes in symbiotic bacteria in association with the invasion and trophic shift of L. humile. In addition, genome content from close relatives of the identified symbionts suggests that just one can synthesize most essential amino acids; this bacterium was only modestly abundant in introduced populations, providing little support for a major role of nitrogen-provisioning symbioses in Argentine ant's dietary shift.


Assuntos
Formigas/microbiologia , Bactérias/classificação , Dieta , Simbiose , Animais , Formigas/fisiologia , Argentina , Comportamento Alimentar , Espécies Introduzidas , RNA Ribossômico 16S/genética
7.
Ecology ; 96(1): 222-30, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26236907

RESUMO

Ants often visit flowers, but have only seldom been documented to provide effective pollination services. Floral visitation by ants can also compromise plant reproduction in situations where ants interfere with more effective pollinators. Introduced ants may be especially likely to reduce plant reproductive success through floral visitation, but existing experimental studies have found little support for this hypothesis. Here, we combine experimental and observational approaches to examine the importance of floral visitation by the nonnative Argentine ant (Linepithema humile) on plant species native to Santa Cruz Island, California, USA. First, we determine how L. humile affects floral visitor diversity, bee visitation rates, and levels of pollen limitation for the common, focal plant species island morning glory (Calystegia macrostegia ssp. macrostegia). Second, we assess the broader ecological consequences of floral visitation by L. humile by comparing floral visitation networks between invaded and uninvaded sites. The Argentine ant and native ants both visited island morning glory flowers, but L. humile was much more likely to behave aggressively towards other floral visitors and to be the sole floral occupant. The presence of L. humile in morning glory flowers reduced floral visitor diversity, decreased rates of bee visitation, and increased levels of pollen limitation. Network comparisons between invaded and uninvaded. sites revealed differences in both network structure and species-level attributes. In. invaded sites, floral visitors were observed on fewer plant species, ants had a higher per-plant interaction strength relative to that of other visitors, and interaction strengths between bees and plants were weaker. These results illustrate that introduced ants can negatively affect plant reproduction and potentially disrupt pollination services at an ecosystem scale.


Assuntos
Formigas , Abelhas , Calystegia/fisiologia , Espécies Introduzidas , Polinização , Animais , Biodiversidade , Sementes/crescimento & desenvolvimento
8.
Ecol Appl ; 25(7): 1841-50, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26591450

RESUMO

Invasions give rise to a wide range of ecological effects. Many invasions proceed without noticeable impacts on the resident biota, whereas others shift species composition and even alter ecosystem function. Ant invasions generate a broad spectrum of ecological effects, but controversy surrounds the extent of these impacts, especially with regard to how other arthropods are affected. This uncertainty in part results from the widespread use of low-resolution taxonomic data, which can mask the presence of other introduced species and make it difficult to isolate the effects of ant invasions on native species. Here, we use high-resolution taxonomic data to examine the effects of Argentine ant invasions on arthropods on Santa Cruz Island, California. We sampled arthropods in eight pairs of invaded and uninvaded plots and then collaborated with taxonomic experts to identify taxa in four focal groups: spiders, bark lice, beetles, and ants. Spiders, bark lice, and beetles made up ~40% of the 9868 non-ant arthropod individuals sampled; the majority of focal group arthropods were putatively native taxa. Although our results indicate strong negative effects of the Argentine ant on native ants, as is well documented, invaded and uninvaded plots did not differ with respect to the richness, abundance, or species composition of spiders, bark lice, and beetles. One common, introduced species of bark louse was more common in uninvaded plots than in invaded plots, and including this species into our analyses changed the relationship between bark louse richness vs. L. humile abundance from no relationship to a significant negative relationship. This case illustrates how failure to differentiate native and introduced taxa can lead to erroneous conclusions about the effects of ant invasions. Our results caution against unqualified assertions about the effects of ant invasions on non-ant arthropods, and more generally demonstrate that accurate assessments of invasion impacts depend on adequate information about species identity.


Assuntos
Formigas/fisiologia , Ecossistema , Insetos/classificação , Espécies Introduzidas , Animais , California , Bases de Dados Factuais , Monitoramento Ambiental , Insetos/fisiologia , Ilhas , Dinâmica Populacional , Especificidade da Espécie
9.
Oecologia ; 174(1): 163-71, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23892582

RESUMO

Mounting evidence indicates that trade-offs between plant defense and reproduction arise not only from resource allocation but also from interactions among mutualists. Indirect costs of plant defense by ants, for example, can outweigh benefits if ants deter pollinators. Plants can dissuade ants from occupying flowers, but such arrangements may break down when novel ant partners infiltrate mutualisms. Here, we examine how floral visitation by ants affects pollination services when the invasive Argentine ant (Linepithema humile) replaces a native ant species in a food-for-protection mutualism with the coast barrel cactus (Ferocactus viridescens), which, like certain other barrel cacti, produces extrafloral nectar. We compared the effects of floral visitation by the Argentine ant with those of the most prevalent native ant species (Crematogaster californica). Compared to C. californica, the Argentine ant was present in higher numbers in flowers. Cactus bees (Diadasia spp.), the key pollinators in this system, spent less time in flowers when cacti were occupied by the Argentine ant compared to when cacti were occupied by C. californica. Presumably as a consequence of decreased duration of floral visits by Diadasia, cacti occupied by L. humile set fewer seeds per fruit and produced fewer seeds overall compared to cacti occupied by C. californica. These data illustrate the importance of mutualist identity in cases where plants balance multiple mutualisms. Moreover, as habitats become increasingly infiltrated by introduced species, the loss of native mutualists and their replacement by non-native species may alter the shape of trade-offs between plant defense and reproduction.


Assuntos
Formigas , Abelhas , Cactaceae/fisiologia , Flores , Espécies Introduzidas , Sementes/fisiologia , Animais , Formigas/classificação , California , Ecossistema , Néctar de Plantas , Polinização , Simbiose
10.
Proc Natl Acad Sci U S A ; 108(51): 20639-44, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22143788

RESUMO

Mutualisms play key roles in the functioning of ecosystems. However, reciprocally beneficial interactions that involve introduced species also can enhance invasion success and in doing so compromise ecosystem integrity. For example, the growth and competitive ability of introduced plant species can increase when fungal or microbial associates provide limiting nutrients. Mutualisms also may aid animal invasions, but how such systems may promote invasion success has received relatively little attention. Here we examine how access to food-for-protection mutualisms involving the red imported fire ant (Solenopsis invicta) aids the success of this prominent invader. Intense interspecific competition in its native Argentina constrained the ability of S. invicta to benefit from honeydew-producing Hemiptera (and other accessible sources of carbohydrates), whereas S. invicta dominated these resources in its introduced range in the United States. Consistent with this strong pattern, nitrogen isotopic data revealed that fire ants from populations in the United States occupy a lower trophic position than fire ants from Argentina. Laboratory and field experiments demonstrated that honeydew elevated colony growth, a crucial determinant of competitive performance, even when insect prey were not limiting. Carbohydrates, obtained largely through mutualistic partnerships with other organisms, thus represent critical resources that may aid the success of this widespread invasive species. These results illustrate the potential for mutualistic interactions to play a fundamental role in the establishment and spread of animal invasions.


Assuntos
Formigas/fisiologia , Simbiose , Animais , Afídeos , Argentina , Carboidratos/química , Ecologia , Ecossistema , Geografia , Espécies Introduzidas , Isótopos , Modelos Biológicos , Néctar de Plantas , Dinâmica Populacional , Estados Unidos
11.
Ecol Evol ; 14(6): e11400, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38832140

RESUMO

Climate change alters environmental conditions in ways that directly and indirectly affect plants. Flowering plants, for example, modify reproductive allocation in response to heat and drought stress, and such changes can in turn affect pollinator visitation and, ultimately, plant reproduction. Although the individual effects of warming and drought on plant reproductive allocation are well known, these factors may interact to influence reproduction. Here, we conducted a fully crossed temperature by irrigation manipulation in squash (Cucurbita pepo) to test how temperature and soil moisture variation affect pollinator-mediated reproduction. To tease apart the direct and indirect effects of temperature and soil moisture, we compared hand-pollinated plants to bee-pollinated plants and restricted bee foraging (i.e., pollen transfer) to one experimental group per day. Temperature and soil-moisture limitation acted independently of one another: warming decreased flower size and increased pollen production, whereas the effects of soil-moisture limitation were uniformly inhibitory. While treatments did not change squash bee (Xenoglossa spp.) behavior, floral visitation by the honey bee (Apis mellifera) increased with temperature in male flowers and decreased with soil moisture in female flowers. Pollen deposition by bees was independent of plant soil moisture, yet reducing soil moisture increased pollen limitation. This result stemmed at least in part from the effects of soil-moisture limitation on pollen viability; seed set declined with increasing deposition of fluorescent pigment (a proxy for pollen) from plants experiencing decreased soil moisture. These findings suggest that the transfer of lower-quality pollen from plants experiencing soil-moisture limitation led to drought-induced pollen limitation. Similar effects may occur in a wide variety of flowering plant species as climate warming and drought increasingly impact animal-pollinated systems.

12.
Evolution ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981009

RESUMO

Island biotas provide unparalleled opportunities to examine evolutionary processes. Founder effects and bottlenecks, for example, typically decrease genetic diversity in island populations, while selection for reduced dispersal can increase population structure. Given that support for these generalities mostly comes from single-species analyses, assemblage-level comparisons are needed to clarify how (i) colonization affects the gene pools of interacting insular organisms, and (ii) patterns of genetic differentiation vary within assemblages of organisms. Here, we use genome-wide sequence data from ultraconserved elements (UCEs) to compare genetic diversity and population structure of mainland and island populations of nine ant species in coastal southern California. As expected, island populations (from Santa Cruz Island) had lower expected heterozygosity and Watterson's theta compared to mainland populations (from the Lompoc Valley). Island populations, however, exhibited smaller genetic distances among samples, indicating less population subdivision. Within the focal assemblage, pairwise Fst values revealed pronounced interspecific variation in mainland-island differentiation, which increases with gyne body size. Our results reveal population differences across an assemblage of interacting species, and illuminate general patterns of insularization in ants. Compared to single-species studies, our analysis of nine conspecific population pairs from the same island-mainland system offers a powerful approach to studying fundamental evolutionary processes.

13.
Oecologia ; 172(1): 197-205, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23053235

RESUMO

Animals frequently experience resource imbalances in nature. For ants, one resource that may be particularly valuable for both introduced and native species is high-carbohydrate honeydew from hemipteran mutualists. We conducted field and laboratory experiments: (1) to test if red imported fire ants (Solenopsis invicta) competed with native ants for access to mutualisms with aphids, and (2) to quantify the effects of aphid honeydew presence or absence on colony growth of native ants. We focused on native dolichoderine ants (Formicidae, Dolichoderinae) because they are abundant ants that have omnivorous diets that frequently include mutualist-provided carbohydrates. At two sites in the southeastern US, native dolichoderine ants were far less frequent, and fire ants more frequent, at carbohydrate baits than would be expected based on their frequency in pitfall traps. A field experiment confirmed that a native ant species, Dorymyrmex bureni, was only found tending aphids when populations of S. invicta were suppressed. In the laboratory, colonies of native dolichoderine ants with access to both honeydew and insect prey had twice as many workers and over twice as much brood compared to colonies fed only ad libitum insect prey. Our results provide the first experimental evidence that introduced ants compete for access to mutualist-provided carbohydrates with native ants and that these carbohydrates represent critical resources for both introduced and native ants. These results challenge traditional paradigms of arthropod and ant nutrition and contribute to growing evidence of the importance of nutrition in mediating ecological interactions.


Assuntos
Formigas/fisiologia , Espécies Introduzidas , Animais , Afídeos/fisiologia , Carboidratos , Comportamento Competitivo
14.
Ecology ; 104(8): e4111, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37243967

RESUMO

Drought is an increasingly important consequence of climate change. Drought often causes plants to alter patterns of resource allocation, which in turn can affect how plants interact with other species. How these altered interactions subsequently influence plant reproductive success remains incompletely understood and may depend on the degree of specialization exhibited by antagonists and mutualists. Specialist pollinators, for example, are dependent on floral resources from their obligate hosts and under drought conditions may thus indiscriminately visit these hosts (at least in certain circumstances). Generalist pollinators, in contrast, may only forage on host plants in good condition, given that they can forage on other plant species. We tested this hypothesis and its consequences for plant reproduction in squash (Cucurbita pepo) grown along an experimental moisture gradient ranging from dry (growth and flowering compromised) to wet conditions. Floral visitation increased with plant soil moisture for generalist honey bees but was independent of plant soil moisture for specialist squash bees. Pollen production increased with plant soil moisture, and fluorescent pigments placed on flowers revealed that pollinators primarily moved pollen from male flowers on well-watered plants to the stigmas of female flowers on well-watered plants. Seed set increased with increasing plant soil moisture but, notably, was higher in bee-pollinated plants compared to plants pollinated by hand with an even mix of pollen from plants grown at either end of the experimental moisture gradient. These results suggest that superior pollen rewards, perhaps combined with selective foraging by generalists, enhanced reproductive success in C. pepo when plant soil moisture was high and more generally illustrate that pollinator behavior may contribute to how drought conditions affect plant reproduction.


Assuntos
Cucurbita , Polinização , Abelhas , Animais , Secas , Reprodução , Flores/fisiologia , Solo , Cucurbita/fisiologia
15.
Proc Natl Acad Sci U S A ; 106(31): 12809-13, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19625616

RESUMO

An unresolved question in ecology concerns why the ecological effects of invasions vary in magnitude. Many introduced species fail to interact strongly with the recipient biota, whereas others profoundly disrupt the ecosystems they invade through predation, competition, and other mechanisms. In the context of ecological impacts, research on biological invasions seldom considers phenotypic or microevolutionary changes that occur following introduction. Here, we show how plasticity in key life history traits (colony size and longevity), together with omnivory, magnifies the predatory impacts of an invasive social wasp (Vespula pensylvanica) on a largely endemic arthropod fauna in Hawaii. Using a combination of molecular, experimental, and behavioral approaches, we demonstrate (i) that yellowjackets consume an astonishing diversity of arthropod resources and depress prey populations in invaded Hawaiian ecosystems and (ii) that their impact as predators in this region increases when they shift from small annual colonies to large perennial colonies. Such trait plasticity may influence invasion success and the degree of disruption that invaded ecosystems experience. Moreover, postintroduction phenotypic changes may help invaders to compensate for reductions in adaptive potential resulting from founder events and small population sizes. The dynamic nature of biological invasions necessitates a more quantitative understanding of how postintroduction changes in invader traits affect invasion processes.


Assuntos
Ecossistema , Comportamento Predatório , Vespas/fisiologia , Adaptação Fisiológica , Animais , Sequência de Bases , Ecologia , Dados de Sequência Molecular , Estações do Ano
16.
Ecology ; 92(2): 325-32, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21618912

RESUMO

Many arthropods engage in mutualisms in which they consume plant-based foods including nectar, extrafloral nectar, and honeydew. However, relatively little is known about the manner in which the specific macronutrients in these plant-based resources affect growth, especially for carnivorous arthropods. Using a combination of laboratory and field experiments, we tested (1) how plant-based foods, together with ad libitum insect prey, affect the growth of a carnivorous ant, Solenopsis invicta, and (2) which macronutrients in these resources (i.e., carbohydrates, amino acids, or both) contribute to higher colony growth. Access to honeydew increased the production of workers and brood in experimental colonies. This growth effect appeared to be due to carbohydrates alone as colonies provided with the carbohydrate component of artificial extrafloral nectar had greater worker and brood production compared to colonies deprived of carbohydrates. Surprisingly, amino acids only had a slight interactive effect on the proportion of a colony composed of brood and negatively affected worker survival. Diet choice in the laboratory and field matched performance in the laboratory with high recruitment to carbohydrate baits and only slight recruitment to amino acids. The strong, positive effects of carbohydrates on colony growth and the low cost of producing this macronutrient for plants and hemipterans may have aided the evolution of food-for-protection mutualisms and help explain why these interactions are so common in ants. In addition, greater access to plant-based resources in the introduced range of S. invicta may help to explain the high densities achieved by this species throughout the southeastern United States.


Assuntos
Formigas/crescimento & desenvolvimento , Afídeos/fisiologia , Plantas/química , Comportamento Predatório/fisiologia , Aminoácidos , Fenômenos Fisiológicos da Nutrição Animal , Animais , Carboidratos
17.
Curr Opin Insect Sci ; 46: 39-42, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33581352

RESUMO

Recent work underscores that ants are highly proficient and ubiquitous scavengers. These tendencies extend to numerically and behaviorally dominant introduced ants, which exhibit a suite of traits that allow them to exploit and monopolize carrion to a greater extent than is widely appreciated. We thus contend that an understanding of how introduced ants fit into food webs remains incomplete. Monopolization of carrion resources by introduced ants could increase worker production, enhance the ability of these species to compete with and prey upon other organisms, and alter the strength of direct and indirect interactions within food webs. Future work should consider how ant invasions influence energy transfer within and between green and brown food webs.


Assuntos
Formigas , Animais , Cadeia Alimentar , Comportamento Predatório
18.
Ecology ; 102(3): e03257, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33226643

RESUMO

Biological invasions are a leading cause of global change, yet their long-term effects remain hard to predict. Invasive species can remain abundant for long periods of time, or exhibit population crashes that allow native communities to recover. The abundance and impact of nonnative species may also be closely tied to temporally variable habitat characteristics. We investigated the long-term effects of habitat fragmentation and invasion by the Argentine ant (Linepithema humile) by resurveying ants in 40 scrub habitat fragments in coastal southern California that were originally sampled 21 yr ago. At a landscape scale, fragment area, but not fragment age or Argentine ant mean abundance, continued to explain variation in native ant species richness; the species-area relationship between the two sample years did not differ in terms of slope or intercept. At local scales, over the last 21 yr we detected increases in the overall area invaded (+36.7%, estimated as the proportion of occupied traps) and the relative abundance of the Argentine ant (+121.95%, estimated as mean number of workers in pitfall traps). Argentine ant mean abundance also increased inward from urban edges in 2017 compared to 1996. The greater level of penetration into fragments likely reduced native ant richness by eliminating refugia for native ants in fragments that did not contain sufficient interior area. At one fragment where we sampled eight times over the last 21 yr, Argentine ant mean abundance increased over time while the diversity of native ground-foraging ants declined from 14 to 4 species. Notably, native species predicted to be particularly sensitive to the combined effect of invasion and habitat loss were not detected at any sites in our recent sampling, including the army ant genus Neivamyrmex. Conversely, two introduced ant species (Brachymyrmex patagonicus and Pheidole flavens) that were undetected in 1996 are now common and widespread at our sites. Our results indicate that behaviorally and numerically dominant invasive species can maintain high densities and suppress native diversity for extended periods.


Assuntos
Formigas , Espécies Introduzidas , Animais , Ecossistema
19.
Insects ; 12(2)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562453

RESUMO

Global climate change is causing more frequent and severe droughts, which could have serious repercussions for the maintenance of biodiversity. Here, we compare native bee assemblages collected via bowl traps before and after a severe drought event in 2014 in San Diego, California, and examine the relative magnitude of impacts from drought in fragmented habitat patches versus unfragmented natural reserves. Bee richness and diversity were higher in assemblages surveyed before the drought compared to those surveyed after the drought. However, bees belonging to the Lasioglossum subgenus Dialictus increased in abundance after the drought, driving increased representation by small-bodied, primitively eusocial, and generalist bees in post-drought assemblages. Conversely, among non-Dialictus bees, post-drought years were associated with decreased abundance and reduced representation by eusocial species. Drought effects were consistently greater in reserves, which supported more bee species, than in fragments, suggesting that fragmentation either had redundant impacts with drought, or ameliorated effects of drought by enhancing bees' access to floral resources in irrigated urban environments. Shifts in assemblage composition associated with drought were three times greater compared to those associated with habitat fragmentation, highlighting the importance of understanding the impacts of large-scale climatic events relative to those associated with land use change.

20.
Mol Ecol ; 19(21): 4823-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20958818

RESUMO

Obtaining quantitative information concerning pollinator behaviour has become a primary objective of pollination studies, but methodological limitations hinder progress towards this goal. Here, we use molecular genetic methods in an ecological context to demonstrate that endemic Hawaiian Hylaeus bees (Hymenoptera: Colletidae) selectively collect pollen from native plant species in Haleakala and Hawaii Volcanoes National Parks. We identified pollen DNA from the crops (internal storage organs) of 21 Hylaeus specimens stored in ethanol for up to 3 years. Genetic analyses reveal high fidelity in pollen foraging despite the availability of pollen from multiple plant species present at each study site. At high elevations in Haleakala, pollen was available from more than 12 species of flowering plants, but Hawaiian silversword (Argyroxiphium sandwicense subsp. macrocephalum) comprised 86% of all pollen samples removed from bee crops. At lower elevations in both parks, we only detected pukiawe (Leptecophylla (Styphelia) tameiameiae) pollen in Hylaeus crops despite the presence of other plant species in flower during our study. Furthermore, 100% of Hylaeus crops from which we successfully identified pollen contained native plant pollen. The molecular approaches developed in this study provide species-level information about floral visitation of Hawaiian Hylaeus that does not require specialized palynological expertise needed for high-throughput visual pollen identification. Building upon this approach, future studies can thus develop appropriate and customized criteria for assessing mixed pollen loads from a broader range of sources and from other global regions.


Assuntos
Comportamento Apetitivo , Abelhas/fisiologia , Pólen/genética , Animais , Código de Barras de DNA Taxonômico , DNA de Plantas/genética , Havaí , Magnoliopsida/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa